Heartbeat monitoring with an mm-wave radar based on deep learning a novel approach for training ...

本文提出一种基于深度学习的新型方法,通过公共特征提取方法处理心电图和毫米波雷达信号,解决异构性问题,训练CNN进行无接触心跳监测。实验结果显示,该方法提高了雷达信号的心跳分类准确性,为心脏病监测提供了新途径。
摘要由CSDN通过智能技术生成

Heartbeat monitoring with an mm-wave radar based on deep learning a novel approach for training and classifying heterogeneous signals

Abstract

Millimetre wave radar is an emerging technology that can monitor vital signs without contact. This unique feature is very suitable for some particular situations, such as burn patient monitoring. Currently, electrocardiogram (ECG) is still the most common approach for monitoring heart disease. Deep learning algorithms have already been applied to classifying ECG recordings and have achieved good diagnostic results. However, it is very rare to see deep learning-based heartbeat classification using radar signals. The reason is a lack of radar-based heart disease datasets, which are the most important part of training a Convolutional Neural Network (CNN). Specifically, the ECG recordings and radar signals are heterogeneous; thus, the ECG dataset cannot train the CNN for directly classifying the radar signals. In this paper, we propose a novel signal processing algorithm called the Common Features Extraction Method (CFEM) to extract the common features of ECG recordings and radar signals to train a CNN for radar heartbeat signal classification. By using CFEM, the ECG dataset is transferred to the radar field, which means that the core issue for training the CNN using radar signals has been solved. Practical experiments show that the CFEM-based CNN can classify heartbeat radar signals accurately.

背景

心脏病是世界各地的主要死因,尤其是老年人。心电图(ECG)系统提供了一种有效的方法来监测心脏跳动。近年来,毫米波雷达系统(Ren et al. 2015)已经被研究用于监测心跳,因为它是非接触式的,并且特别适合于接触式监测不方便的情况。

动机

最近的一些研究(Kiranyaz,因斯和Gabbouj 2016)已经应用卷积神经网络(CNN)等深度学习算法来解决心脏病诊断问题。然而,使用雷达信号进行基于深度学习的心脏病分类非常罕见。ECG记录和雷达信号是异质的。因此,ECG数据集不能用于训练CNN来对雷达信号进行分类。因此,应用深度学习对雷达心跳信号进行分类的核心问题是解决雷达心跳数据集问题,或者更准确地说,解决异构信号问题。

目的

使用ECG数据集来训练毫米波雷达心跳信号的CNN模型

方法

具体而言,被称为公共特征提取方法(CFEM)的信号处理算法被设计为将ECG和雷达信号特征两者进行传递和结合,使得ECG数据集可以直接用于训练CNN以用于对雷达信号进行分类。

ECG信号变化剧烈,与平滑的雷达信号有很大不同。因此,基于ECG的CNN不能直接预测雷达心跳信号;否则,这将导致负迁移,从而恶化分类结果。

在这里,我们提出了一个信号处理算法称为CFEM来解决这个负传递问题。心电图与雷达波形在R-R间期上有很高的一致性。心房颤动(AF)的R-R曲线通常呈不规则形,这一特征可用于临床诊断。因此,我们尝试利用常见的R-R间期特征来重塑ECG和雷达信号,以便CNN可以调整这两种信号以区分正常和AF心跳。

在这里插入图片描述

具体算法如下所示。首先,利用小波变换对心电信号进行整形。如图4(a,c)所示,ECG信号包含具有基线偏移的强噪声,这可能会降低CNN的性能。在这里,我们应用最大重叠离散小波变换(MODWT)来去除基线以及噪声和一些不需要的频率分量,以增强R-R间期。采用sym 4小波对心电信号进行六层分解。不同的小波系数被组合并仔细选择。最后,尺度4和5被组合以重构ECG信号。具体地,标度4和标度5分别对应于11至22 Hz和5至11 Hz。然后对重建的ECG波形进行平方,以获得更清晰和成形的R-R间期,如图4(a,c)所示。

在这里插入图片描述

在这里插入图片描述

接下来,雷达信号必须被整形为与重构的ECG信号相似的特征,使得CNN可以适应整形的雷达信号并正确地检测AF。雷达信号的峰值之间的间隔代表R-R间隔,因此首先要选择合适的阈值来找到峰值并记录其幅度和时间位置。峰值信息然后用于创建周期性高斯脉冲,因为高斯脉冲具有与ECG信号非常相似的特性。最后,所产生的高斯脉冲被归一化并平方,如图4(B,d)所示。利用连续小波变换(CWT)将整形后的心电信号和雷达信号变换到时频域。

实验和结果

选择PhysioNet 2017数据集来训练CNN。可用的AF和正常ECG信号分别为700和5,000。通过使用GAN网络进行数据增强来避免不平衡数据集可能导致的过拟合。最终,4,000个正常和4,000个AF用于培训,500个正常和500个AF用于验证,500个正常和500个AF用于测试。

还收集了真实ECG记录和雷达信号。10名健康人和10名房颤患者被邀请坐在雷达前采集心跳信号,并使用心电图仪采集心电数据进行测试。对于每名患者,ECG和雷达采集的总信号长度均为1800秒。每个测试信号长度为26秒,20名患者采集的信号可分为近1400组(20名患者× 1800秒/26秒× 1400组)。在这里,选择了500个正常信号和500个AF信号进行地面实况测试。值得注意的是,这些测试数据不是由GAN创建的。

CNN的训练过程如下所示

请添加图片描述

本文做了两组实验,分别验证1)CFEM应用于输入ECG数据集之前和之后的ECG分类准确度,以及(2)CFEM训练的CNN是否可以正确分类雷达信号。

实验结果如下所示:

请添加图片描述
请添加图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzqwtc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值