Sa2VA环境搭建&推理测试

引子

Sa2VA模型通过结合SAM-2和LLaVA,将文本、图像和视频统一到共享的LLM标记空间中,能够在少量指令微调下执行多种任务,如图像/视频对话、指称分割和字幕生成。该模型在视频编辑和内容创作中展现出强大的性能,在相关基准任务中达到了SOTA水平。OK,那就让我们开始吧。

一、模型介绍

Sa2VA 模型通过结合基础视频分割模型 SAM-2 和高级视觉语言模型 LLaVA,将文本、图像和视频统一到共享的 LLM 标记空间中。这种架构设计使得 Sa2VA 能够在最少指令微调的情况下,执行多种任务,包括图像对话、视频对话、图像指称分割、视频指称分割和基于单次指令调整的字幕生成。

Sa2VA 在多个实际应用中展示了其强大的性能和潜力,其能够与用户进行自然语言交互,理解和生成与图像和视频内容相关的对话;在复杂视频场景中,准确分割用户指称的对象,因此非常适用于视频编辑、内容创作等场景。Sa2VA 具备 Qwen2-VL 和 InternVL2.5 所缺乏的视觉提示理解和密集对象分割能力,并且在图像和视频基础和分割基准上都实现了 SOTA 性能。

二、环境搭建

模型下载

https://huggingface.co/ByteDance/Sa2VA-4B/tree/main

代码下载

git clone https://github.com/magic-research/Sa2VA.git

docker run -it -v /datas/work/zzq/:/workspace --gpus=all pytorch/pytorch:2.4.0-cuda12.4-cudnn9-devel bash

cd /workspace/Sa2VA/Sa2VA-main

pip install mmcv==2.2.0 -f https://download.openmmlab.com/mmcv/dist/cu121/torch2.4/index.html

cd demo

pip install -r requirements.txt -i Simple Index

三、推理测试

python demo.py example/ --model_path Sa2VA-4B/ --work-dir output --text "Please describe the video content." --select 2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

要养家的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值