YOLO-World环境搭建&推理测试

本文介绍了YOLO-World,一种前沿的开集目标检测器,它利用提示后检测范式和视觉-语言PAN模型,实现在大规模数据集上高效且零样本的性能。作者还分享了如何通过Ultralytics库简化YOLO-World的安装和使用过程,以及在行人检测等任务中的应用实例。
摘要由CSDN通过智能技术生成

一、引子

CV做了这么多年,大多是在固定的数据集上训练,微调,测试。突然想起来一句话,I have a dream!就是能不能不用再固定训练集上捣腾,也就是所谓的开放词汇目标检测(OVD)。偶尔翻翻AI新闻,发现现在CV领域有在卷开集目标检测的趋势。刚好翻到,YOLO-World这一开源项目。OK,让我们开始吧。

二、模型介绍

目标检测一直是计算机视觉中一个长期而基础性的挑战,在图像理解、机器人学和自动驾驶车辆等领域有着众多的应用。随着深度神经网络的发展,大量的研究工作在目标检测领域取得了显著的突破。尽管这些方法取得了成功,但它们仍然有限,因为它们只处理具有固定词汇量的目标检测,例如,COCO 数据集中的80个类别。一旦定义并标记了目标类别,训练出的检测器只能检测那些特定的类别,这样就限制了在开放场景中的能力和适用性。

作者探索了一种“提示后检测”范式,以进一步改进实际场景中开集目标检测的效率。传统的目标检测器专注于固定词汇(封闭集)的检测,这些词汇是预定义且经过训练的类别。而之前的开集检测器则使用文本编码器对用户提示进行编码,以实现在线词汇的检测目标。值得注意的是,这些方法往往采用带有重型 Backbone 网络的大型检测器,例如Swin-L,以增加开集的容量。相比之下,“提示后检测”范式首先对用户的提示进行编码以构建离线词汇,该词汇根据不同的需求而变化。然后,高效的检测器可以在不重新编码提示的情况下即时推理离线词汇。对于实际应用,一旦作者训练了检测器,即YOLO-World,作者可以预先编码提示或类别以构建离线词汇,然后无缝地将其整合到检测器中。

作者的主要贡献可以概括为三个方面:

作者介绍了YOLO-World,这是一个前沿的开集目标检测器,它具有高效率,适用于实际应用场景。

作者提出了一个可重新参数化的视觉-语言PAN模型,用以连接视觉和语言特征,并针对YOLO-World设计了一套开集区域文本对比预训练方案。

YOLO-World在大规模数据集上的预训练展示了强大的零样本性能,在LVIS上达到35.4 AP的同时,还能保持52.0 FPS的速度。预训练的YOLO-World可以轻松适应下游任务,例如,开集实例分割和指代目标检测。此外,YOLO-World的预训练权重和代码将开源,以促进更多实际应用。

三、安装环境

官方YOLO-World是基于mmyolo, mmdetection实现的,但U1S1,mm系列对于入门确实不错,但对于新开源算法上手测试真心难用,听说ultralytics支持YOLO-World了,可以直接通过ultralytics库来玩YOLO-world了使用方式简单到了极致,几行命令即可,还不需要安装一大堆的mm包,不需要编译各种无关op。

拉取镜像

docker pull ultralytics/ultralytics:latest

docker run -it --rm -v /datas/work/zzq:/workspace ultralytics/ultralytics:latest bash

四、推理测试

cd /workspace/YOLO-World

1、普通检测

from ultralytics import YOLOWorld  
  
# Initialize a YOLO-World model  
model = YOLOWorld('yolov8s-world.pt')    

# Execute inference with the YOLOv8s-world on the specified image  
results = model.predict('bus.jpg')  
  
# Show results  
results[0].show() 
results[0].save("result.jpg")

python test_yolo_world.py

2、行人检测

from ultralytics import YOLOWorld  
  
# Initialize a YOLO-World model  
model = YOLOWorld('yolov8s-world.pt')    

Define custom classes  
model.set_classes(["person"]) 

# Execute inference with the YOLOv8s-world on the specified image  
results = model.predict('bus.jpg')  
  
# Show results  
results[0].show() 
results[0].save("result.jpg")

安装CLIP

GitHub - ultralytics/CLIP: CLIP (Contrastive Language-Image Pretraining), Predict the most relevant text snippet given an image

pip install ftfy regex tqdm

cd CLIP-main

pip install . -i Simple Index

python test_yolo_world.py

from ultralytics import YOLOWorld # Initialize a YOLO-World model model = YOLOWorld('yolov8s-world.pt') Define custom classes model.set_classes(["person"]) # Execute inference with the YOLOv8s-world on the specified image results = model.predict('bus.jpg') # Show results results[0].show() results[0].save("result.jpg")

运行过程中需要下载模型

最终结果:

The error message you're encountering suggests that there's an issue with importing the `YOLO_WORLD_EfficientSAM` module from a Python package. The `ImportError: attempted relative import with no known parent package` typically indicates that the code is trying to use a relative import (`from . import ...`) but the current directory structure does not have a proper package structure or the parent package has not been imported correctly. Here's what you can do to resolve this: 1. **Check package structure**: Ensure that you have a `__init__.py` file in the root directory of your package, as this is required for Python to recognize it as a package. If the module you're trying to import is in a subdirectory, move it up to the same level or create the necessary levels of directories (e.g., `your_package/your_subpackage`). 2. **Use absolute imports**: Instead of using relative imports, try importing the module using an absolute path, like `from yoloworld import YOLO_WORLD_EfficientSAM`. 3. **Ensure correct import statement**: If you are within a package, make sure you're importing the package correctly before attempting to import the submodule. For example, if the package is called `yoloworld`, you might need to do `import yoloworld` first and then use `from yoloworld.YOLO_WORLD_EfficientSAM import *`. 4. **Update PYTHONPATH**: If you're working in a development environment, ensure your PYTHONPATH environment variable includes the correct path to the package location. If you provide more details about your project setup and the exact context where you're encountering this error, I could give a more tailored solution. Here are some related questions for further clarification:
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

要养家的程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值