题意:
N个村庄要实现村村通,Q个村已经相通了,求剩下的村庄要实现村村通的最小花费。
思路:
相通的村庄距离置为0,跑一边最小生成树就好啦。
Prim算法VS
Kruskal算法(感觉后者既好写,效率又高)
Prim算法:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int inf=0x3f3f3f3f;
const int Max_v=110;
int V,Q;
int dist[Max_v];
bool vis[Max_v];
int cost[Max_v][Max_v];
int Prim(){
memset(dist,0x3f,sizeof(dist));
memset(vis,0,sizeof(vis));
int sum=0;
dist[0]=0;
while(true){
int v=-1;
for(int i=0;i<V;i++){
if(!vis[i]&&dist[i]!=inf&&(v==-1||dist[i]<dist[v]))v=i;
}
if(v==-1)break;
vis[v]=1;sum+=dist[v];
for(int i=0;i<V;i++){
if(!vis[i]&&dist[i]>cost[v][i])
dist[i]=cost[v][i];
}
}
return sum;
}
int main()
{
scanf("%d",&V);
int c;
for(int i=0;i<V;i++){
for(int j=0;j<V;j++){
scanf("%d",&c);
cost[i][j]=c;
}
}
scanf("%d",&Q);
int a,b;
for(int i=0;i<Q;i++){
scanf("%d%d",&a,&b);
cost[a-1][b-1]=0;cost[b-1][a-1]=0;
}
printf("%d\n",Prim());
return 0;
}
Kruskal算法:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int inf=0x3f3f3f3f;
const int Max_v=110;
const int Max_e=11000;
struct edge{
int from,to,cost;
bool operator<(const edge& e)const{
return cost<e.cost;
}
}e[Max_e];
int V,E,Q;
int par[Max_v];
int cost[Max_v][Max_v];
int Find(int x){
if(par[x]==x)return x;
return par[x]=Find(par[x]);
}
int Kruskal(){
int ans=0,sum=0;
for(int i=0;i<V;i++)par[i]=i;
sort(e,e+E);
for(int i=0;i<E;i++){
int x=Find(e[i].from);
int y=Find(e[i].to);
if(x!=y){
ans++;sum+=e[i].cost;
par[x]=y;
}
if(ans==V-1)break;
}
return sum;
}
int main()
{
scanf("%d",&V);
int c;
for(int i=0;i<V;i++){
for(int j=0;j<V;j++){
scanf("%d",&c);
cost[i][j]=c;
}
}
E=0;
for(int i=0;i<V;i++){
for(int j=i+1;j<V;j++){
e[E].from=i;e[E].to=j;
e[E++].cost=cost[i][j];
}
}
scanf("%d",&Q);
int a,b;
for(int i=0;i<Q;i++){
scanf("%d%d",&a,&b);
e[E].from=a-1;e[E].to=b-1;
e[E++].cost=0;
}
printf("%d\n",Kruskal());
return 0;
}