线性代数之四:线性变换

4.1 线性变换

线性变换:一个将向量空间V映射到向量空间W的映射L,如果对所有V中的向量v以及标量a,b,都有 L(av1+bv2)=aL(v1)+bL(v2) ,则称L为V的线性变换(Liner transformation),记作 L:V>W ,如果V和W是相同的,称L是V的线性算子(liner operator)。

线性变换的性质:若L为从向量空间V到向量空间W的线性变换,则有:

  • L(0)=0
  • L(a1v1+a2v2+....+anvn)=a1L(v1)+a2L(v2)+...+anL(vn)
  • L(v)=L(v)

定义: L:V>W 为一线性变换,则L的核ker(L)定义为:

ker(L)={vV|L(v)=0w}

定义: L:V>W 为一线性变换,且S为V的一子空间,则S的像(image)定义为:

L(S)={wW|w=L(v),vS}
,V的像L(V)称为L的值域(range)。

定理:在上面两个定义的基础上,ker(L)是V的子空间,L(S)为W的子空间。

4.2 线性变换与矩阵表示

定理:若L为一从 Rn Rm 的线性变换,则存在一个m*n的矩阵A,使得每个 Rn 中的元素x,都有 L(x)=Ax
事实上,A的第j个列向量为: aj=L(ej),j=1,2,...n,ej
此定理说明线性变换可以由矩阵乘法来计算,并给出了计算矩阵A的方法。

矩阵表示定理: E=[v1,v2,...,vn] F=[u1,u2,...,um] 分别为向量空间V和U的有序基,则对每一线性变换L:V->U,存在矩阵 Amn ,使得对任意 wV L(w)在F下的表示为:

[L(w)]F=A[w]E(3)

A称为L相应于E,F的表示矩阵,A的各列:
aj=[L(vj)]F,j=1,2,...,n,vjE

定理: E=[v1,v2,...,vn] F=[u1,u2,...,um] 分别为Rn和Rm的有序基,若L:V->U为线性变换,且A为L相应于E和F的表示矩阵, U=(u1,u2,...,um) ,则

aj=U1L(vj)(4)

示例:线性算子L为将向量进行扩展2倍的操作,向量空间的基为 E[(1,0)T,(0,1)T] , F[(2,3)T,(1,2)T]
向量 w=(1,2)T ,w基于E的表示为 [w]E=(1,2)T ,有 [L(w)]E=(2,4)T [L(w)]F=(0,2)T 。因 U1=[2312] ,由(4)式可得 A=[4624] 。可验证满足(3)式。

推论:若A为线性变换L相应基于E,F的表示矩阵,则 (u1,...,um|L(v1),...,L(vn)) 的行最简形为(I|A)
推论给出了计算线性变换的表示矩阵的方法,即构造U|L(v)的增广矩阵,对U做行变化将其变换为I则L(v)部分即变换为表示矩阵A。

4.3 计算机图形与动画

平面上的图形可以在计算机上存储为一个顶点的集合。若有n个顶点,可将其存储在2*n的矩阵V中,顶点的x坐标存储在第一行,y坐标存储在第二行。则图形的下面4种操作都可以使用线性变换来完成,变换后的顶点矩阵V’=A*V。

  • 放大和缩小:其表示矩阵为 A=cI ,c>1时为放大,c<1时为缩小。
  • 关于x轴对称:其表示矩阵为$A=[e1,-e2]
  • 关于y轴对称:其表示矩阵为$A=[-e1,e2]
  • 旋转:令旋转角度为 θ ,则表示矩阵为 A=[cosθsinθsinθcosθ]
  • 平移:由于平移不是线性变换,因此要借助齐次坐标系,将二维向量等同于三维中与此向量前两个坐标相同,而第三个坐标为1的向量。因此所有顶点坐标变为(x.y,1),假定平移量为(a,b),此时表示矩阵为 A=100010ab1

4.4 相似性

若L为向量空间V的线性算子,且L可表示为矩阵A,然而A的具体取值依赖有序基的选择。下面的定理用于刻画相同的线性算子不同表示矩阵的关系。

定理: E=[v1,v2,...,vn] F=[w1,w2,...,wm] 为一个向量空间V的两个有序基,并令L为V上的线性算子。若A为L相应于E的表示矩阵,B为L相应于F的表示矩阵,令S为从F到E的转移表示矩阵,则

B=S1AS

定义:令A和B为n阶方阵,如果存在一个非奇异矩阵S,使得 B=S1AS ,则称B相似于A。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值