线性代数
继续前进,基本线性代数包含在这里。
简单数组运算
参考numpy文件夹中的linalg.py获得更多信息
>>> from numpy import *
>>> from numpy.linalg import *
>>> a = array([[1.0, 2.0], [3.0, 4.0]])
>>> print a
[[ 1. 2.]
[ 3. 4.]]
>>> a.transpose()#转置
array([[ 1., 3.],
[ 2., 4.]])
>>> inv(a) #逆矩阵
array([[-2. , 1. ],
[ 1.5, -0.5]])
>>> u = eye(2) # unit 2x2 matrix; "eye" represents "I"
>>> u
array([[ 1., 0.],
[ 0., 1.]])
>>> j = array([[0.0, -1.0], [1.0, 0.0]])
>>> dot (j, j) # matrix product点乘,内积
array([[-1., 0.],
[ 0., -1.]])
>>> trace(u) # trace方阵的迹就是主对角元素之和
2.0
>>> y = array([[5.], [7.]])#解方程
>>> solve(a, y)
array([[-3.],
[ 4.]])
Solve the system of equations 3 * x0 + x1 = 9
and x0 + 2 * x1 = 8
>>> a = np.array([[3,1], [1,2]])
>>> b = np.array([9,8])
>>> x = np.linalg.solve(a, b)
>>> x
array([ 2., 3.])
>>> eig(j)#特征值和特征向量(array([ 0.+1.j, 0.-1.j]),array([[ 0.70710678+0.j, 0.70710678+0.j], [ 0.00000000-0.70710678j, 0.00000000+0.70710678j]]))Parameters: square matrixReturns The eigenvalues, each repeated according to its multiplicity. The normalized (unit "length") eigenvectors, such that the column ``v[:,i]`` is the eigenvector corresponding to the eigenvalue ``w[i]`` .
在numpy.linalg模块中:
-
eigvals() 计算矩阵的特征值
-
eig() 返回包含特征值和对应特征向量的元组
参考代码:
import numpy as np
a = np.array([[1,2],[3,4]]) # 示例矩阵
A1 = np.linalg.eigvals(a) # 得到特征值
A2,B = np.linalg.eig(a) # 其中A2也是特征值,B为特征向量
矩阵类
这是一个关于矩阵类的简短介绍。
>>> A = matrix('1.0 2.0; 3.0 4.0')
>>> A
[[ 1. 2.]
[ 3. 4.]]
>>> type(A) # file where class is defined
<class 'numpy.matrixlib.defmatrix.matrix'>
>>> A.T # transpose
[[ 1. 3.]
[ 2. 4.]]
>>> X = matrix('5.0 7.0')
>>> Y = X.T
>>> Y
[[5.]
[7.]]
>>> print A*Y # matrix multiplication
[[19.]
[43.]]
>>> print A.I # inverse
[[-2. 1. ]
[ 1.5 -0.5]]
>>> solve(A, Y) # solving linear equation
matrix([[-3.],
[ 4.]])
索引:比较矩阵和二维数组
注意NumPy中数组和矩阵有些重要的区别。NumPy提供了两个基本的对象:一个N维数组对象和一个通用函数对象。其它对象都是建构在它们之上 的。特别的,矩阵是继承自NumPy数组对象的二维数组对象。对数组和矩阵,索引都必须包含合适的一个或多个这些组合:整数标量、省略号 (ellipses)、整数列表;布尔值,整数或布尔值构成的元组,和一个一维整数或布尔值数组。矩阵可以被用作矩阵的索引,但是通常需要数组、列表或者 其它形式来完成这个任务。
像平常在Python中一样,索引是从0开始的。传统上我们用矩形的行和列表示一个二维数组或矩阵,其中沿着0轴的方向被穿过的称作行,沿着1轴的方向被穿过的是列。9
让我们创建数组和矩阵用来切片:
>>> A = arange(12)
>>> A
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> A.shape = (3,4)
>>> M = mat(A.copy())
>>> print type(A)," ",type(M)
<type 'numpy.ndarray'> <class 'numpy.core.defmatrix.matrix'>
>>> print A
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
>>> print M
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
现在,让我们简单的切几片。基本的切片使用切片对象或整数。例如,A[:]
和M[:]
的求值将表现得和Python索引很相似。然而要注意很重要的一点就是NumPy切片数组不创建数据的副本;切片提供统一数据的视图。
>>> print A[:]; print A[:].shape
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
(3, 4)
>>> print M[:]; print M[:].shape
[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
(3, 4)
现在有些和Python索引不同的了:你可以同时使用逗号分割索引来沿着多个轴索引。
>>> print A[:,1]; print A[:,1].shape
[1 5 9]
(3,)
>>> print M[:,1]; print M[:,1].shape
[[1]
[5]
[9]]
(3, 1)
注意最后两个结果的不同。对二维数组使用一个冒号产生一个一维数组,然而矩阵产生了一个二维矩阵。10例如,一个M[2,:]
切片产生了一个形状为(1,4)的矩阵,相比之下,一个数组的切片总是产生一个最低可能维度11的数组。例如,如果C是一个三维数组,C[...,1]
产生一个二维的数组而C[1,:,1]
产生一个一维数组。从这时开始,如果相应的矩阵切片结果是相同的话,我们将只展示数组切片的结果。
假如我们想要一个数组的第一列和第三列,一种方法是使用列表切片:
>>> A[:,[1,3]]
array([[ 1, 3],
[ 5, 7],
[ 9, 11]])
稍微复杂点的方法是使用take()
方法(method):
>>> A[:,].take([1,3],axis=1)
array([[ 1, 3],
[ 5, 7],
[ 9, 11]])
如果我们想跳过第一行,我们可以这样:
>>> A[1:,].take([1,3],axis=1)
array([[ 5, 7],
[ 9, 11]])
或者我们仅仅使用A[1:,[1,3]]
。还有一种方法是通过矩阵向量积(叉积)。
>>> A[ix_((1,2),(1,3))]
array([[ 5, 7],
[ 9, 11]])
为了读者的方便,在次写下之前的矩阵:
>>> A[ix_((1,2),(1,3))]
array([[ 5, 7],
[ 9, 11]])
现在让我们做些更复杂的。比如说我们想要保留第一行大于1的列。一种方法是创建布尔索引:
>>> A[0,:]>1
array([False, False, True, True], dtype=bool)
>>> A[:,A[0,:]>1]
array([[ 2, 3],
[ 6, 7],
[10, 11]])
就是我们想要的!但是索引矩阵没这么方便。
>>> M[0,:]>1
matrix([[False, False, True, True]], dtype=bool)
>>> M[:,M[0,:]>1]
matrix([[2, 3]])
这个过程的问题是用“矩阵切片”来切片产生一个矩阵12,但是矩阵有个方便的A
属性,它的值是数组呈现的。所以我们仅仅做以下替代:
>>> M[:,M.A[0,:]>1]
matrix([[ 2, 3],
[ 6, 7],
[10, 11]])
如果我们想要在矩阵两个方向有条件地切片,我们必须稍微调整策略,代之以:
>>> A[A[:,0]>2,A[0,:]>1]
array([ 6, 11])
>>> M[M.A[:,0]>2,M.A[0,:]>1]
matrix([[ 6, 11]])
我们需要使用向量积ix_
:
>>> A[ix_(A[:,0]>2,A[0,:]>1)]
array([[ 6, 7],
[10, 11]])
>>> M[ix_(M.A[:,0]>2,M.A[0,:]>1)]
matrix([[ 6, 7],
[10, 11]])
技巧和提示
下面我们给出简短和有用的提示。
“自动”改变形状
更改数组的维度,你可以省略一个尺寸,它将被自动推导出来。
>>> a = arange(30)
>>> a.shape = 2,-1,3 # -1 means "whatever is needed"
>>> a.shape
(2, 5, 3)
>>> a
array([[[ 0, 1, 2],
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11],
[12, 13, 14]],
[[15, 16, 17],
[18, 19, 20],
[21, 22, 23],
[24, 25, 26],
[27, 28, 29]]])
向量组合(stacking)
我们如何用两个相同尺寸的行向量列表构建一个二维数组?在MATLAB中这非常简单:如果x和y是两个相同长度的向量,你仅仅需要做m=[x;y]
。在NumPy中这个过程通过函数column_stack
、dstack
、hstack
和vstack
来完成,取决于你想要在那个维度上组合。例如:
x = arange(0,10,2) # x=([0,2,4,6,8])
y = arange(5) # y=([0,1,2,3,4])
m = vstack([x,y]) # m=([[0,2,4,6,8],
# [0,1,2,3,4]])
xy = hstack([x,y]) # xy =([0,2,4,6,8,0,1,2,3,4])
二维以上这些函数背后的逻辑会很奇怪。
参考写个Matlab用户的NumPy指南并且在这里添加你的新发现: )
直方图(histogram)
NumPy中histogram
函数应用到一个数组返回一对变量:直方图数组和箱式向量。注意:matplotlib
也有一个用来建立直方图的函数(叫作hist
,正如matlab中一样)与NumPy中的不同。主要的差别是pylab.hist
自动绘制直方图,而numpy.histogram
仅仅产生数据。
import numpy
import pylab
# Build a vector of 10000 normal deviates with variance 0.5^2 and mean 2
mu, sigma = 2, 0.5
v = numpy.random.normal(mu,sigma,10000)
# Plot a normalized histogram with 50 bins
pylab.hist(v, bins=50, normed=1) # matplotlib version (plot)
pylab.show()
# Compute the histogram with numpy and then plot it
(n, bins) = numpy.histogram(v, bins=50, normed=True) # NumPy version (no plot)
pylab.plot(.5*(bins[1:]+bins[:-1]), n)
pylab.show()