46.全排列
难度:中等
标签:DFS,回溯算法
给定一个 没有重复 数字的序列,返回其所有可能的全排列。
示例:
输入: [1,2,3]
输出:
[
[1,2,3],
[1,3,2],
[2,1,3],
[2,3,1],
[3,1,2],
[3,2,1]
]
思路分析:
1.手工模拟就是一共选n个数,第一次有n个数可以选,第二次可以选剩下n-1个 数,一直到n个数选完
2.我们可以吧这模拟成这个一个n叉树,根结点是一个空的结点,当做第0层,第一层,有n个分叉,广度优先,不能使用回溯,这里使用深度优先,用for循环来形成,n个分叉,用递归也就是深度优先,来往下进行.
3.我们使用一个path栈来存储中间过程的结果,我们在每个结点的时候,要插入下一个结点,要寻找第一个没有被使用的数,这里用boolean used[]数组来表示,添加到path栈中后将这点标志为已使用,继续深度优先,回来后得把used[i]标志为未使用,且把刚进栈的结点退出来,这就是回溯,可以省中间状态过程的空间,如果到了最后一层也就是深度等于n个数,那么就把这n个数的数组,添加到结果数组中,注意:把这个引用拷贝,然后添加进去,不能传一个引用,不然最后这个引用会改变为原来的null
import java.util.*;
public class Solution {
public List<List<Integer>> permute(int[] nums) {
int len = nums.length;
List<List<Integer>> res = new ArrayList<>();
//如果为空
if (len == 0) {
return res;
}
//栈,用来存储中间过程产生的结果,最后完成的结果需要拷贝到结果中
Deque<Integer> path = new ArrayDeque<>();
//用来标志这个数是否被使用过
boolean[] used = new boolean[len];
//深度优先和dfs
//一开始传入的深度是0
dfs(nums, len, 0, path, used, res);
return res;
}
private void dfs(int[] nums, int len, int depth, Deque<Integer> path, boolean[] used, List<List<Integer>> res) {
//如果中间结果有n个数了,说明已经是一个排列了
if (depth == len) {
//将这个添加到结果中;
//注意:不能添加这个引用,因为这个引用的值一直在改变,并不是你要的结果
//你需要将这个引用的数据拷贝一份,然后添加
res.add(new ArrayList<>(path));
return;
}
for (int i = 0; i < len; i++) {
//如果被使用
if (used[i]) ;
else {
//没被使用就添加到中间结果中
path.addLast(nums[i]);
//标志为已使用
used[i] = true;
//继续深度优先
dfs(nums, len, depth + 1, path, used, res);
//返回时,删除添加的元素,标志为未被使用,回溯到之前的状态
path.removeLast();
used[i] = false;
}
}
}
}