文章目录
The Properties Of Determinants
- 行列式的表示: det A A A 或者 | A A A|
1. n by n 的单位阵的行列式是1
∣
1
0
⋯
0
0
1
⋯
0
⋮
⋮
⋱
⋮
0
0
⋯
1
∣
=
1
\left| \begin{matrix} 1 & 0 & \cdots & 0 \\0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 &0 & \cdots & 1\\ \end{matrix} \right|=1
∣∣∣∣∣∣∣∣∣10⋮001⋮0⋯⋯⋱⋯00⋮1∣∣∣∣∣∣∣∣∣=1
2. 如果方阵的两行互换,则行列式的符号改变,变成相反数
−
∣
a
b
c
d
∣
=
∣
c
d
a
b
∣
-\left| \begin{matrix} a & b \\ c & d \end{matrix} \right|= \left| \begin{matrix} c & d \\ a& b \end{matrix} \right|
−∣∣∣∣acbd∣∣∣∣=∣∣∣∣cadb∣∣∣∣
3. 行列式是 行 的线性函数
∣
t
a
t
b
c
d
∣
=
t
∣
a
b
c
d
∣
\left| \begin{matrix} ta & tb \\ c & d \end{matrix} \right|= t\left| \begin{matrix} a & b \\ c & d \end{matrix} \right|
∣∣∣∣tactbd∣∣∣∣=t∣∣∣∣acbd∣∣∣∣
∣
a
+
a
′
b
+
b
′
c
d
∣
=
∣
a
b
c
d
∣
+
∣
a
′
b
′
c
d
∣
\left| \begin{matrix} a+a' & b+b' \\ c & d \end{matrix} \right|= \left| \begin{matrix} a & b \\ c & d \end{matrix} \right|+ \left| \begin{matrix} a' & b' \\ c & d \end{matrix} \right|
∣∣∣∣a+a′cb+b′d∣∣∣∣=∣∣∣∣acbd∣∣∣∣+∣∣∣∣a′cb′d∣∣∣∣
4. 如果有两行相等 ,则行列式为0
∣
a
b
a
b
∣
=
0
\left| \begin{matrix} a & b \\ a & b \end{matrix} \right|=0
∣∣∣∣aabb∣∣∣∣=0
5. 一行乘以一个数加到另一行,行列式不变
∣
a
b
c
−
ρ
a
d
−
ρ
b
∣
=
∣
a
b
c
d
∣
\left| \begin{matrix} a & b \\ c-\rho a & d-\rho b \end{matrix} \right|= \left| \begin{matrix} a & b \\ c & d \end{matrix} \right|
∣∣∣∣ac−ρabd−ρb∣∣∣∣=∣∣∣∣acbd∣∣∣∣
6. 有全0行的方阵 的行列式为0
∣
0
0
c
d
∣
=
0
\left|\begin{matrix} 0 & 0\\ c & d \end{matrix} \right|=0
∣∣∣∣0c0d∣∣∣∣=0
7. 三角阵的行列式:对角元素乘积
∣
a
0
c
d
∣
=
a
d
∣
a
b
0
d
∣
=
a
d
\left|\begin{matrix} a & 0\\ c & d \end{matrix} \right|=ad\space\space\space\space\space\space\space\space \left| \begin{matrix} a & b\\ 0 & d \end{matrix} \right|=ad
∣∣∣∣ac0d∣∣∣∣=ad ∣∣∣∣a0bd∣∣∣∣=ad
8. 如果行列式为0,方阵是奇异矩阵(不可逆)。如果方阵可逆,行列式不为0
9.
A
B
AB
AB的行列式等于
A
A
A的行列式乘以
B
B
B的行列式
∣
A
B
∣
=
∣
A
∣
∣
B
∣
|AB|=|A||B|
∣AB∣=∣A∣∣B∣
10.
A
A
A转置的行列式等于
A
A
A的行列式(意味着以上的性质也适应于列)
∣
A
T
∣
=
∣
A
∣
|A^T|=|A|
∣AT∣=∣A∣
The Methods To Culculate Determinants
- Big Formula(其实是一个公式)
1.
n
∗
n
n*n
n∗n的矩阵有
n
!
n!
n!项 ,一半是正数,一半是负数,
2
∗
2
方
阵
∣
a
b
c
d
∣
=
a
d
−
b
c
2*2方阵\space\space\space\space\space\space\space\space \left|\begin{matrix} a & b\\ c & d \end{matrix} \right|=ad-bc
2∗2方阵 ∣∣∣∣acbd∣∣∣∣=ad−bc
3
∗
3
方
阵
∣
a
11
a
12
a
13
a
21
a
22
a
23
a
31
a
32
a
33
∣
=
a
11
a
22
a
33
+
a
12
a
23
a
31
+
a
13
a
21
a
32
−
a
11
a
23
a
32
−
a
12
a
21
a
33
−
a
13
a
22
a
31
3*3方阵\space\space\space\space \left|\begin{matrix} a11 & a12 &a13 \\ a21 & a22 & a23 \\ a31 & a32 & a33 \end{matrix} \right|=a11 a22 a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31
3∗3方阵 ∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣=a11a22a33+a12a23a31+a13a21a32−a11a23a32−a12a21a33−a13a22a31
2. 有时候可以进行快速计算,我们遵循一个原则:每项中的entry来自不同的行和列,所有可能结果之和就是行列式。如:4*4方阵,每项有4个entrys
[
1
0
a
0
0
1
b
0
0
0
c
0
0
0
d
1
]
\left[ \begin{matrix} 1 & 0&a &0\\ 0 & 1 & b&0\\ 0& 0 & c&0\\ 0 & 0 & d&1 \end{matrix} \right]
⎣⎢⎢⎡10000100abcd0001⎦⎥⎥⎤
- 第 1、2、4列只能选1,其他都是0,第三列我们可以选 a b c d,但是,1 2 4 行已经有值,所以只能选c。只有一种可能:1 1 c 1,行列式为c
- 如果经过换列或者行才能将entry都放在对角上,变换次数是偶数,行列式不变,变换次数是奇数,行列式还需要乘以-1。如下:
[ 1 0 a 0 0 1 b 0 0 1 c 0 0 0 d 1 ] \left[ \begin{matrix} 1 & 0&a &0\\ 0 & 1 & b&0\\ 0& 1& c&0\\ 0 & 0 & d&1 \end{matrix} \right] ⎣⎢⎢⎡10000110abcd0001⎦⎥⎥⎤
那么可选择的有下面两个,但是右边的需要第二列 和第三列互换,才能得到对角矩阵,所以行列式为-b。最终结果加起来:c-b
[ 1 0 0 0 0 1 0 0 0 0 c 0 0 0 0 1 ] [ 1 0 0 0 0 0 b 0 0 1 0 0 0 0 0 1 ] \left[ \begin{matrix} 1 & 0&0&0\\ 0 & 1 &0&0\\ 0& 0& c&0\\ 0 & 0 & 0&1 \end{matrix} \right] \space\space\space\space\space\space\space \left[ \begin{matrix} 1 & 0&0&0\\ 0 & 0& b&0\\ 0& 1& 0&0\\ 0 & 0 & 0&1 \end{matrix} \right] ⎣⎢⎢⎡1000010000c00001⎦⎥⎥⎤ ⎣⎢⎢⎡100000100b000001⎦⎥⎥⎤
- Cofactors(余子式)
-
余子式:设一个entry为 a i j aij aij,去掉其所在的行和列,剩下的SubMatrix 的行列式,记作: M i j Mij Mij
-
一个方阵的行列式等于 任意一行的的各元素与其对应的代数式余子式乘积之和。Mij 的系数是 ( − 1 ) i + j (-1)^{i+j} (−1)i+j
∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = ∣ a 11 a 22 a 23 a 32 a 33 ∣ + ∣ a 12 a 21 a 23 a 31 a 33 ∣ + ∣ a 13 a 21 a 22 a 31 a 32 ∣ = a 11 M 11 + ( − 1 ) a 12 M 12 + a 13 M 13 \left|\begin{matrix} a11 & a12 &a13 \\ a21 & a22 & a23 \\ a31 & a32 & a33 \end{matrix} \right|=\left|\begin{matrix} a11 & & \\ & a22 & a23 \\ & a32 & a33 \end{matrix} \right|+\left|\begin{matrix} & a12 & \\ a21 & & a23 \\ a31 & & a33 \end{matrix} \right|+\left|\begin{matrix} & &a13 \\ a21 & a22 & \\ a31 & a32 & \end{matrix} \right| = a11M11 +(-1)a12M12+a13M13 ∣∣∣∣∣∣a11a21a31a12a22a32a13a23a33∣∣∣∣∣∣=∣∣∣∣∣∣a11a22a32a23a33∣∣∣∣∣∣+∣∣∣∣∣∣a21a31a12a23a33∣∣∣∣∣∣+∣∣∣∣∣∣a21a31a22a32a13∣∣∣∣∣∣=a11M11+(−1)a12M12+a13M13
如:
∣
2
−
1
−
1
2
−
1
−
1
2
−
1
−
1
2
∣
=
2
∗
∣
2
−
1
−
1
2
−
1
−
1
2
∣
−
(
−
1
)
∗
∣
−
1
−
1
2
−
1
−
1
2
∣
\left|\begin{matrix} 2& -1 & &&\\ -1 &2&-1& \\ & -1 & 2&-1\\ &&-1&2 \end{matrix} \right|=2*\left|\begin{matrix} 2 & -1&\\ -1 & 2 & -1 \\ & -1& 2 \end{matrix} \right|-(-1)*\left|\begin{matrix} -1 & -1&\\ & 2 & -1 \\ & -1& 2 \end{matrix} \right|
∣∣∣∣∣∣∣∣2−1−12−1−12−1−12∣∣∣∣∣∣∣∣=2∗∣∣∣∣∣∣2−1−12−1−12∣∣∣∣∣∣−(−1)∗∣∣∣∣∣∣−1−12−1−12∣∣∣∣∣∣
Cramers’s Rule, Inverses and Volumes
- Cramer’s Rule
1. 如果 A A A的行列式不是0, A x = b Ax=b Ax=b 可以用行列式来解
Key idea:
[
a
1
a
2
a
3
]
[
x
1
0
0
x
2
1
0
x
3
0
1
]
=
[
b
1
a
12
a
13
b
2
a
22
a
23
b
3
a
32
a
33
]
=
B
1
\left[\begin{matrix} & &\\ a1& a2 & a3 \\ & & \end{matrix} \right]\left[\begin{matrix} x1& 0&0\\ x2& 1 & 0 \\ x3& 0& 1 \end{matrix} \right]=\left[\begin{matrix} b1& a12&a13\\ b2& a22 & a23 \\ b3& a32& a33 \end{matrix} \right]=B1
⎣⎡a1a2a3⎦⎤⎣⎡x1x2x3010001⎦⎤=⎣⎡b1b2b3a12a22a32a13a23a33⎦⎤=B1
设中间矩阵为 X X X
d
e
t
(
A
)
d
e
t
(
X
)
=
d
e
t
(
B
1
)
det(A)det(X)=det(B1)
det(A)det(X)=det(B1)
d
e
t
(
A
)
x
1
=
d
e
t
(
B
1
)
det(A)x1=det(B1)
det(A)x1=det(B1)
x
1
=
d
e
t
(
B
1
)
/
d
e
t
(
A
)
x1=det(B1)/det(A)
x1=det(B1)/det(A)
同理:
[
a
1
a
2
a
3
]
[
1
x
1
0
0
x
2
0
0
x
3
1
]
=
[
a
1
b
a
3
]
=
B
2
\left[\begin{matrix} & &\\ a1& a2 & a3 \\ & & \end{matrix} \right]\left[\begin{matrix} 1& x1&0\\ 0& x2 & 0 \\ 0& x3& 1 \end{matrix} \right]=\left[\begin{matrix} & &\\ a1&b & a3 \\ & & \end{matrix} \right]=B2
⎣⎡a1a2a3⎦⎤⎣⎡100x1x2x3001⎦⎤=⎣⎡a1ba3⎦⎤=B2
x 2 = d e t ( B 2 ) / d e t ( A ) x2=det(B2)/det(A) x2=det(B2)/det(A)
同理:
x 3 = d e t ( B 3 ) / d e t ( A ) x3=det(B3)/det(A) x3=det(B3)/det(A)
例题
3 x 1 + 4 x 2 = 2 5 x 1 + 6 x 2 = 4 \begin{array}{l} 3x1+4x2=2\\ 5x1+6x2=4 \end{array} 3x1+4x2=25x1+6x2=4
d e t A = ∣ 3 4 5 6 ∣ d e t B 1 = ∣ 3 4 5 6 ∣ d e t B 2 = ∣ 3 4 5 6 ∣ det A=\left|\begin{matrix} 3& 4\\ 5& 6 \end{matrix} \right|\space \space det B1=\left|\begin{matrix} 3& 4\\ 5& 6 \end{matrix} \right|\space \space det B2=\left|\begin{matrix} 3& 4\\ 5& 6 \end{matrix} \right| detA=∣∣∣∣3546∣∣∣∣ detB1=∣∣∣∣3546∣∣∣∣ detB2=∣∣∣∣3546∣∣∣∣
C r a m e r ′ s R u l e : x 1 = − 4 − 2 = 2 x 2 = 2 − 2 = − 1 Cramer's Rule :\space\space\space\space x1=\frac{-4}{-2}=2\space\space\space\space x2=\frac{2}{-2}=-1 Cramer′sRule: x1=−2−4=2 x2=−22=−1
c h e c k [ 3 4 5 6 ] [ 2 − 1 ] = [ 2 4 ] check \left[\begin{matrix} 3& 4\\ 5& 6 \end{matrix} \right] \left[\begin{matrix} 2\\ -1 \end{matrix} \right] =\left[\begin{matrix} 2\\ 4 \end{matrix} \right] check[3546][2−1]=[24]
2. A − 1 A^{-1} A−1
C表示余子式,最后的每项
C
j
i
C_{ji}
Cji的系数 是
(
−
1
)
i
+
j
(-1)^{i+j}
(−1)i+j
(
A
−
1
)
i
j
=
C
j
i
d
e
t
A
(A^{-1})_{ij}=\frac{C_{ji}}{det\space A}
(A−1)ij=det ACji
比
如
:
(
A
−
1
)
31
=
C
13
d
e
t
A
比如:(A^{-1})_{31}=\frac{C_{13}}{det\space A}
比如:(A−1)31=det AC13
例题:
A
=
[
a
b
c
d
]
A= \left[ \begin{matrix} a &b \\ c & d \end{matrix} \right]
A=[acbd]
C
11
=
d
∣
A
∣
,
C
21
=
−
c
∣
A
∣
,
C
12
=
−
b
∣
A
∣
,
C
22
=
a
∣
A
∣
C_{11}=\frac{d}{|A|} ,\space\space C_{21}=\frac{-c}{|A|},\space\space C_{12}=\frac{-b}{|A|},\space\space C_{22}=\frac{a}{|A|}
C11=∣A∣d, C21=∣A∣−c, C12=∣A∣−b, C22=∣A∣a
∣
A
∣
=
1
a
d
−
b
c
|A|=\frac{1}{ad-bc}
∣A∣=ad−bc1
A
−
1
=
1
a
d
−
b
c
[
d
−
b
−
c
a
]
A^{-1}= \frac{1}{ad-bc}\left[ \begin{matrix} d &-b \\ -c & a \end{matrix} \right]
A−1=ad−bc1[d−c−ba]
3. 行列式的几何意义
- 在
x
y
x\space y
x y 坐标平面中,3个点的坐标分别是
(
x
1
,
y
1
)
(
x
2
,
y
2
)
(
x
3
,
y
3
)
(x1,y1)\space (x2,y2)\space (x3,y3)
(x1,y1) (x2,y2) (x3,y3) ,那么它组成三角形的面积是:
d e t e r m i n a n t 2 = 1 2 ∣ x 1 y 1 1 x 2 y 2 1 x 3 y 3 1 ∣ \frac{determinant}{2}=\frac{1}{2} \left| \begin{matrix} x1 & y1 & 1\\ x2 & y2 & 1 \\ x3 & y3& 1 \end{matrix} \right| 2determinant=21∣∣∣∣∣∣x1x2x3y1y2y3111∣∣∣∣∣∣
如果 ( x 3 , y 3 ) (x3,y3) (x3,y3) 是(0,0)的话 面积等于:
1 2 ∣ x 1 y 1 x 2 y 2 ∣ \frac{1}{2} \left| \begin{matrix} x1 & y1 \\ x2 & y2 \end{matrix} \right| 21∣∣∣∣x1x2y1y2∣∣∣∣
平行四边形的面积=determinant,不需要除以2
如果求出的值是负数,那么取它的绝对值。
- 在
x
y
z
x\space y\space z
x y z 三维空间中,三个三维向量
(
a
11
a
12
a
13
)
(
a
21
a
22
a
23
)
(
a
31
a
32
a
33
)
(a_{11}a_{12}a_{13}) (a_{21}a_{22}a_{23})(a_{31}a_{32}a_{33})
(a11a12a13)(a21a22a23)(a31a32a33)分别对应平行六面体的三条边,三个三维向量 不要求垂直,只需要能构成体积就行。那么它的体积等于:
∣ a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 ∣ \left| \begin{matrix} a_{11}& a_{21}& a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} &a_{23}& a_{33} \end{matrix} \right| ∣∣∣∣∣∣a11a12a13a21a22a23a31a32a33∣∣∣∣∣∣
可以这样想:如果三个向量两两垂直,假设为 ( 2 , 0 , 0 ) ( 0 , 3 , 0 ) ( 0 , 0 , 4 ) (2,0,0) (0,3,0)(0,0,4) (2,0,0)(0,3,0)(0,0,4),那么体积为三个边长之积:2*3*4=24,将边长放在矩阵中,求行列式也是2*3*4=24,如下:
∣ 2 0 0 0 3 0 0 0 4 ∣ = 2 ∗ 3 ∗ 4 = 24 \left| \begin{matrix} 2& 0 & 0 \\ 0 & 3& 0 \\ 0 & 0 & 4 \end{matrix} \right|=2*3*4=24 ∣∣∣∣∣∣200030004∣∣∣∣∣∣=2∗3∗4=24
- 内积 、外积、三重积
(1) 内积(Dot Product):两个向量的内积大小是一个长度,是一个数。
两个向量
(
x
1
,
x
2
,
x
3
)
(
y
1
,
y
2
,
y
3
)
(x1,x2,x3)\space (y1,y2,y3)
(x1,x2,x3) (y1,y2,y3)的内积对应坐标乘积之和:
x
1
y
1
+
x
2
y
2
+
x
3
y
3
x1y1+x2y2+x3y3
x1y1+x2y2+x3y3,通常写成
x
T
y
x^Ty
xTy
(2)外积(Cross Product):两个向量的外积大小是面积,还是一个向量。
u
×
v
=
∣
i
j
k
u
1
u
2
u
3
v
1
v
2
v
3
∣
=
(
u
2
v
3
−
u
3
v
2
)
i
+
(
u
3
v
1
−
u
1
v
3
)
j
+
(
u
1
v
2
−
u
2
v
1
)
k
u\times v= \left| \begin{matrix} i & j & k \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{matrix} \right|=(u_{2}v_{3}- u_{3}v_{2} )i+(u_{3} v_{1}- u_{1}v_{3} )j+(u_{1}v_{2} -u_{2} v_{1} )k
u×v=∣∣∣∣∣∣iu1v1ju2v2ku3v3∣∣∣∣∣∣=(u2v3−u3v2)i+(u3v1−u1v3)j+(u1v2−u2v1)k
得到的这个向量大小等于
u
u
u
v
v
v 组成的四边形面积,方向垂直于这个平面,符合右手定则,
x
×
y
x\times y
x×y的方向如下图 。
x
×
y
=
−
(
y
×
x
)
x\times y=-(y\times x)
x×y=−(y×x)
(3)三重积(Triple Product)三个向量的三重积大小是体积
u
v
w
u\space v \space w\space
u v w 的Triple Product定义为:
(
u
×
v
)
⋅
w
(u\times v \space )\cdot w
(u×v )⋅w =
d
e
t
e
r
m
i
n
a
t
=
∣
w
1
w
2
w
3
u
1
u
2
u
3
v
1
v
2
v
3
∣
=
∣
u
1
u
2
u
3
v
1
v
2
v
3
w
1
w
2
w
3
∣
determinat=\left| \begin{matrix} w_{1} & w_{2} & w_{3} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3} \end{matrix} \right|=\left| \begin{matrix} u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\\ w_{1} & w_{2} & w_{3} \end{matrix} \right|
determinat=∣∣∣∣∣∣w1u1v1w2u2v2w3u3v3∣∣∣∣∣∣=∣∣∣∣∣∣u1v1w1u2v2w2u3v3w3∣∣∣∣∣∣