通行时间估计 读书笔记

Learning to Estimate the Travel Time Didichuxing

中文提示:通行时间估计

特征提取:

对路段中所有可能获取的数据进行特征提取 包括交叉路口,route,信号灯信息

路段长度、宽度、车道数、本段在路网中的索引号。

时间数据:rush hours、off-peak hours.

当天是一年中的什么时间   holiday指示和高峰指示(indicator)

交通信息:实时车速估计、平均速度和自由车速。

个人信息:不同人的不同驾驶偏好、车辆本身的特点。

增强信息:引入天气情况、限制信息。

学习估计旅行时间:

损失函数的定义:MAPE+正则化项

 

GBDT:一棵树的复杂度可以定义为Lt是树的叶节点数,γ是一个可调因子。

Huber函数近似MAPE函数。其对离群点不敏感。

Huber loss: Huber loss是为了增强平方误差损失函数(squared loss function)对噪声(或叫离群点,outliers)的鲁棒性提出的。具体定义如下:

可视化表现:

Wide-Deep-Recurrent Learning

模型:

Wide model:将输入特征投影到高维空间 通过交叉积的方式。

其几何意义为:生成的向量与原2个向量均垂直。

与FM类似。接着进行仿射变换,y=wx+b,Wide model可被视为广义线性模型。

Deep model:使用特征嵌入层。

【嵌入层Embedding用在网络的开始层将你的输入转换成向量,所以当使用Embedding前应首先判断你的数据是否有必要转换成向量。如果你有categorical数据或者数据仅仅包含整数(像一个字典一样具有固定的数量)你可以尝试下Embedding 层。
如果你的数据是多维的你可以对每个输入共享嵌入层或尝试单独的嵌入层。】

通过紧凑的特征向量来表示高维稀疏特征的每个类别。密集输入特征与嵌入特征进行连接,并入FNN(前馈神经网络)。

顶层的回归器将wide和deep特征结合,进行回归作出最终预测。

 

然而wide和deep能够捕捉到全局统计信息,但很难捕捉局部交通信息。路段可视为路径中的block,且沿着每条route的路段都具有清晰的序列结构——引入RNN,LSTM。

 

 

能够抓住全局的信息。

结合Wide Deep Recurrent三种结构,该模型继承了三个模型优势,有效利用了密集特征,高维稀疏特征和沿路段序列的局部特征。可以在ETA学习问题中有效地使用该信息。

WDR模型的三个主要部分

  1. 在wide部分使用二阶交叉积变换,然后进行仿射变换以获得256维输出。
  2. 在deep部分将稀疏的特征嵌入为20维空间,然后和密集特征连接,通过三层MLP(全连接)网络和ReLu激活函数得到最后的256维输出。
  3. RNN:每个路段的信息都会被投影成为256维空间(通过全连接网络),变换后的特征将会输入标准LSTM cellsize=256。最后的LSTM的state作为regressor的输入。T是路段序列的长度。
  4. 使用MAPE((mean_absolute_percentage_error)loss  BP训练方法。 优化方法:Adam 一种随机梯度下降算法自适应步长和动量。

Learningrate=0.001 

损失函数:

可借鉴的点:

  1. 结合wide deep recurrent 其实每一个模型都是一种表示 最后用回归器去拟合。则其本质上仍然为一个回归问题。
  2. Wide deep LSTM 我们也可以使用CNN Wide deep(全连接网络)三个一起结合使用。其最终目的是生成特征表示。然后用特征表示去回归。组合/集成的思想 GBDT+FM+CNN?
  3. 其MAPE也较高一般高于20% 有的达到30%。所以最终模型可能不是特别好,但是只要有所提高即可。

 

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值