51nod 1113 矩阵快速幂

1113 矩阵快速幂

基准时间限制:3 秒 空间限制:131072 KB 分值: 40 难度:4级算法题

收藏

 

关注

给出一个N * N的矩阵,其中的元素均为正整数。求这个矩阵的M次方。由于M次方的计算结果太大,只需要输出每个元素Mod (10^9 + 7)的结果。

Input

第1行:2个数N和M,中间用空格分隔。N为矩阵的大小,M为M次方。(2 <= N <= 100, 1 <= M <= 10^9)
第2 - N + 1行:每行N个数,对应N * N矩阵中的1行。(0 <= N[i] <= 10^9)

Output

共N行,每行N个数,对应M次方Mod (10^9 + 7)的结果。

Input示例

2 3
1 1
1 1

Output示例

4 4
4 4

 

#include <bits/stdc++.h>
typedef long long ll;
const ll mod=1e9+7;
using namespace std;
ll n,m;
struct kk
{
    ll a[105][105];
}
t;
kk juzhen(kk a,kk b)
{
    kk c={0};
    for(ll i=0;i<n;i++)
    {
        for(ll j=0;j<n;j++)
        {
            for(int k = 0 ; k < n ; k ++)
                 c.a[i][j]=(c.a[i][j]+a.a[i][k]*b.a[k][j])%mod;
        }
    }
    return c;
}
kk kuaisu(ll m)
{
    kk b;
    memset(b.a,0,sizeof(b.a));
    for(ll i=0;i<n;i++)
    {
        b.a[i][i]=1;
    }
    if(n<0)return b;
    while(m)
    {
        if(m&1)b=juzhen(b,t);
        m>>=1;
        t=juzhen(t,t);
    }
    return b;
}
int main()
{
    ios::sync_with_stdio(false);
    cin>>n>>m;
    for(ll i=0;i<n;i++)
    {
        for(ll j=0;j<n;j++)
        {
            cin>>t.a[i][j];
        }
    }
    kk dd=kuaisu(m);
    for(ll i=0;i<n;i++)
    {
        for(ll j=0;j<n;j++)
        {
            cout<<dd.a[i][j]<<' ';
        }
        cout<<endl;
    }
    return 0;
}

 

阅读更多
想对作者说点什么?

博主推荐

换一批

没有更多推荐了,返回首页