51nod 1113 矩阵快速幂

1113 矩阵快速幂
基准时间限制:3 秒 空间限制:131072 KB 分值: 40 难度:4级算法题
收藏
关注
给出一个N * N的矩阵,其中的元素均为正整数。求这个矩阵的M次方。由于M次方的计算结果太大,只需要输出每个元素Mod (10^9 + 7)的结果。
Input
第1行:2个数N和M,中间用空格分隔。N为矩阵的大小,M为M次方。(2 <= N <= 100, 1 <= M <= 10^9)
第2 - N + 1行:每行N个数,对应N * N矩阵中的1行。(0 <= N[i] <= 10^9)
Output
共N行,每行N个数,对应M次方Mod (10^9 + 7)的结果。
Input示例
2 3
1 1
1 1
Output示例
4 4
4 4
#include <bits/stdc++.h>
typedef long long ll;
const ll mod=1e9+7;
using namespace std;
ll n,m;
struct kk
{
    ll a[105][105];
}
t;
kk juzhen(kk a,kk b)
{
    kk c={0};
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            ll l=0;
            while(l<n)
            {
                c.a[i][j]+=a.a[l][j]*b.a[i][l];
                l++;
            }
            c.a[i][j]%=mod;
            l=0;
        }
    }
    return c;
}
kk kuaisu(ll m)
{
    kk b;
    memset(b.a,0,sizeof(b.a));
    for(int i=0;i<n;i++)
    {
        b.a[i][i]=1;
    }
    if(n<0)return b;
    while(m)
    {
        if(m&1)b=juzhen(b,t);
        m>>=1;
        t=juzhen(t,t);
    }
    return b;
}
int main()
{
    ios::sync_with_stdio(false);
    cin>>n>>m;
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            cin>>t.a[i][j];
        }
    }
    kk dd=kuaisu(m);
    for(int i=0;i<n;i++)
    {
        for(int j=0;j<n;j++)
        {
            cout<<dd.a[i][j]<<' ';
        }
        cout<<endl;
    }
    return 0;
}


阅读更多
上一篇51nod 1267 4个数和为0 //(二分和压缩用空间换时间)
下一篇洛谷 P1540 机器翻译
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭