面板数据随机效应模型下,可行的广义最小二乘法FGLS估计

本文探讨了在面板数据模型中,如何根据Hausman检验选择随机效应模型,并采用FGLS(可行广义最小二乘法)进行估计。通过具体的步骤和实例,解释了在面板数据存在异方差、截面相关和一阶自相关情况下的FGLS估计过程,以及如何使用xtpcse命令进行修正。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下的操作都是先基于huasman检验,H检验的p值大于0.05 选择随机效应模型,运用FGLS估计法。若p值小于0.05 选择固定效应模型,运用LSDV估计法。

面板模型估计FGLS

1、导入数据,对面板数据进行Hausman检验
这部分内容具体可参考本人的另一篇文章,就不在多做描述https://blog.csdn.net/zzzxmfj/article/details/88976277
2、面板数据广义最小二乘法FGLS估计
基于我所使用的面板数据得到的p值为0.2148 大于0.05 将进行FGLS估计
在这里插入图片描述
可行广义最小二乘法FGLS

xtgls F ROE CI FI i.code1, panels(cor) corr(ar1) igls iterate(100) toleranece(le-3)

以上 F 是面板数据中被解释变量,ROE CI FI 都是面板数据中的解释变量
i.code1 因为是pool回归 必须加i 表示个体固定效应
panels 有三个参数选项panels(het) het表示只有异方差 panels(cor) cor 表示截面相关以及异方差 penels(iid) iid表示独立同分布
corr 有两个参数选项 corr(ar1) corr(psar1) 表示组内自相关 ar1 表示一阶自回归系数相同、 psar1 表示一阶自回归系数不相同
igls 表示迭代方法 igls iterate(100) 表示迭代100次 toleranece(le-3) 表示精度为十的负三次方

下面考虑 个体固定效应 异方差 截面

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值