目录
一、广义最小二乘法(GLS)的理论原理
广义最小二乘法(Generalized Least Squares,GLS)作为普通最小二乘法(Ordinary Least Squares,OLS)的重要拓展,在处理存在复杂问题的数据时发挥着关键作用。在经典的线性回归框架中,我们往往期望误差项具备一系列理想的特性,如零均值、同方差以及无自相关等。然而,现实中的数据常常无法完美契合这些假设。
当面临异方差或自相关等情况时,OLS方法所给出的估计结果虽然在无偏性方面仍然成立,但在效率性方面却不再是最优的。这意味着,OLS估计量的方差可能并非最小,从而影响了估计的精度和可靠性。
具体而言,假设我们的线性回归模型可以表示为 ,其中 代表因变量向量, 是自变量矩阵, 为待估计的参数向量,而 则是误差项。如果误差项的协方差矩阵被表示为 ,那么GLS的估计量则可以通过以下公式得出: 。
通过采用适当的变换策略,GLS能够有效地应对数据中的异方差或自相关问题,从而提供更为精确和有效的参数估计,为我们深入理解变量之间的关系提供了更有力的工具。
二、准备数据
在本次示例中,我们将运用Stata自带的波士顿房价数据集(boston.dta
)来进行操作和分析。这个数据集涵盖了众多与房价相关的变量,为我们的研究提供了丰富的信息。
sysuse boston, clear
通过执行上述代码,我们成功地加载并清理了所需的数据集,为后续的建模和分析做好了充分的准备。
三、建立实证模型
为了探究房价的影响因素,我们假设要