一、介绍
Multiple Maps t-SNE 是一种对t-SNE的改进算法。Multiple Maps t-SNE是通过构造一系列的图来展示数据点之间的相似性,可以解决t-SNE的不能区分语义相似的缺点。相对于t-SNE,我们在Multiple Maps t-SNE中引入权重的概念,在Multiple Maps t-SNE中同一个点在不同的图中,会展现出不同的权重。Multiple Maps t-SNE 主要解决了非度量的相似数据的降维问题,例如包含语义相似的数据集的降维或者是论文的联合作者的分类等。
二、算法过程
Multiple Maps t-SNE 中我们设置M个图,每个图中有N个点,每个点在不同的图中的权重是不同的,每个图都有一个索引为m,点i在m图中的权重我们使用πi(m)表示。在Multiple Maps t-SNE 中我们对πi(m)进行限制,要求∀i∀m :πi(m) ≥ 0 and ∀i :∑πi(m) =

Multiple Maps t-SNE是一种针对t-SNE的改进降维算法,解决了t-SNE在处理语义相似性和中心化对象可视化时的局限。通过引入权重概念,允许多个图展示数据点间的相似性,有效处理不可转换的相似性问题。此外,该算法还解决了二维空间中过中心化点的可视化挑战。
最低0.47元/天 解锁文章
10万+

被折叠的 条评论
为什么被折叠?



