TypeError: conv2d(): argument ‘input‘ (position 1) must be Tensor, not NoneType

本文讲述了在PyTorch中实现自定义卷积层时,由于忘记返回输出导致的报错,并提供了修复方法。通过实例说明了在forward函数中添加return语句的重要性,以确保正确处理神经网络计算流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

报错信息:卷积的输入应该是tensor,而不是Nonetype。
输入的图片是正常的tensor,但是为什么会报错。
通过定位与检测,发现我写一个自定义常规卷积的时候,忘记return了。

class BasicBlock(nn.Module):
    expansion=1
    def __init__(self):
        super(BasicBlock, self).__init__()
      	self.conv1=nn.Conv2d(3,3,kernel_size=3,stride=stride,padding=1,bias=False)
        self.bn1=nn.BatchNorm2d(3)
        self.relu=nn.ReLU()
 
    def forward(self,x):
        x=self.conv1(x)
        x=self.bn1(x)
        x=self.relu(x)
		# forward函数就写到了这里,然后没有return所以报错
        #return out

将return加上即可


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值