色彩空间与几何变换
一图像类型转换
如何将图像在BGR与RGB之间转换
import cv2
import numpy as np
img1=cv2.imread("pig.jpg")
rgb = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)*图像类型转换函数
cv2.imshow("BGR",img1)
cv2.imshow("RGB",rgb)
cv2.waitKey(0)
cv2.destroyAllWindows()
如何将图像在BGR模式与GRAY模式之间转换
gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
cv2.imshow("GRAY",gray)
cv2.waitKey(0)
cv2.destroyAllWindows()
颜色通道分离
将图像在BGR模式与HSV模式之间转换
hsv=cv2.cvtColor(bgr,cv2.COLOR_BGR2HSV)#转换为HSV颜色空间
cv2.imshow("HSV",hsv)
cv2.waitKey(0)
cv2.destroyAllWindows()
二、提取指定颜色
案例一 提取图像中的红色区域
案例:图像怀旧特效
三、简单的几何变换
案例一 图像缩放
案例二 图像翻转
img_flip1=cv2.flip(img,0)#x轴翻转
cv2.imshow("FLIP1",img_flip1)
cv2.waitKey(0)
cv2.destroyAllWindows()
案例三 图像仿射变换
案例四 透视
#读图
img = cv2.imread('shudu.jpg')
rows, cols,_ = img.shape
# 原始点阵
pts_o = np.float32([[88, 177], [716, 85], [216, 695], [957, 551]]) # 这四个点为原始图片上数独的位置
pts_d = np.float32([[0, 0], [600, 0], [0, 600], [600, 600]]) # 这是变换之后的图上四个点的位置
# 获取转换矩阵
M = cv2.getPerspectiveTransform(pts_o, pts_d)
# 应用变换
dst = cv2.warpPerspective(img, M, (600, 600)) # 最后一参数是输出dst的尺寸。可以和原来图片尺寸不一致。按需求来确定
cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()
© Fu Xianjun. All Rights Reserved.