色彩空间与几何变换

色彩空间与几何变换

一图像类型转换

如何将图像在BGR与RGB之间转换

import cv2
import numpy as np
img1=cv2.imread("pig.jpg")
rgb = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)*图像类型转换函数
cv2.imshow("BGR",img1)
cv2.imshow("RGB",rgb)
cv2.waitKey(0)
cv2.destroyAllWindows()

如何将图像在BGR模式与GRAY模式之间转换

gray = cv2.cvtColor(bgr, cv2.COLOR_BGR2GRAY)
cv2.imshow("GRAY",gray)
cv2.waitKey(0)
cv2.destroyAllWindows()

颜色通道分离
在这里插入图片描述
将图像在BGR模式与HSV模式之间转换

hsv=cv2.cvtColor(bgr,cv2.COLOR_BGR2HSV)#转换为HSV颜色空间
cv2.imshow("HSV",hsv)
cv2.waitKey(0)
cv2.destroyAllWindows()
二、提取指定颜色

案例一 提取图像中的红色区域
在这里插入图片描述
案例:图像怀旧特效
在这里插入图片描述

三、简单的几何变换

案例一 图像缩放
在这里插入图片描述
案例二 图像翻转

img_flip1=cv2.flip(img,0)#x轴翻转
cv2.imshow("FLIP1",img_flip1)
cv2.waitKey(0)
cv2.destroyAllWindows()

案例三 图像仿射变换
在这里插入图片描述
案例四 透视

#读图
img = cv2.imread('shudu.jpg')
rows, cols,_ = img.shape

# 原始点阵
pts_o = np.float32([[88, 177], [716, 85], [216, 695], [957, 551]]) # 这四个点为原始图片上数独的位置
pts_d = np.float32([[0, 0], [600, 0], [0, 600], [600, 600]]) # 这是变换之后的图上四个点的位置

# 获取转换矩阵
M = cv2.getPerspectiveTransform(pts_o, pts_d)
# 应用变换
dst = cv2.warpPerspective(img, M, (600, 600)) # 最后一参数是输出dst的尺寸。可以和原来图片尺寸不一致。按需求来确定

cv2.imshow('img', img)
cv2.imshow('dst', dst)
cv2.waitKey(0)
cv2.destroyAllWindows()

© Fu Xianjun. All Rights Reserved.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值