[唯一分解定理] LightOJ 1220

题意:

给一个x,问让它被表示成b^p(b的p次方)。p最大是多少。

思路:

将x分解,得到质因子以及个数。

最大其实就是这些质因子个数的最大公约数。

然后要注意这题输入的x可能是负数。

负数的话要去掉2的约数。

代码:

// http://blog.csdn.net/wdcjdtc/article/details/44653913
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>

using namespace std;

typedef long long ll;

const int N = 1e6 + 100;

int num = 0;
ll prime[ N ];
bool isPrime[ N ];
void init () {
    memset ( isPrime, true, sizeof ( isPrime ) );
    isPrime[ 0 ] = isPrime[ 1 ] = false;

    for ( int i = 2; i < N; ++i ) {
        if ( isPrime[ i ] ) {
            prime[ num++ ] = i;

            for ( int j = i + i; j < N; j += i )
                isPrime[ j ] = false;
        }
    }
}

int gcd ( int a, int b ) { return b == 0 ? a : gcd ( b, a % b ); }

int main () {

    init ();
    int T;
    scanf ( "%d", &T );

    for ( int ks = 1; ks <= T; ++ks ) {
        ll n;
        scanf ( "%lld", &n );

        int flag = 0;
        if ( n < 0 )
            n = -n, flag = 1;

        //唯一分解
        ll ans = 0;
        for ( int i = 0; i < num && prime[ i ] * prime[ i ] <= n; ++i ) {
            ll cnt = 0;
            while ( n % prime[ i ] == 0 )
                ++cnt, n /= prime[ i ];

            //取最大公因数
            ans = ( ans == 0 ? cnt : gcd ( ans, cnt ) );
        }

        //素数,没有其它因子
        if ( n > 1 )
            ans = 1;

        //负数,不能是偶数次幂
        if ( flag )
            while ( ans % 2 == 0 )
                ans /= 2;

        printf ( "Case %d: %lld\n", ks, ans );
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值