HDU 1796 How many integers can you find (容斥原理)

原创 2015年07月08日 22:08:17

题目链接:How many integers can you find



题面:

How many integers can you find

Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 5345    Accepted Submission(s): 1515


Problem Description
  Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
 

Input
  There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
 

Output
  For each case, output the number.
 

Sample Input
12 2 2 3
 

Sample Output
7
 

Author
wangye
 

Source
 

Recommend
wangye


解题:

     容斥原理是早学过,但从没想过功能如此强大,最近老是碰到。这道题,题意是求给定的集合中,在1~(n-1)范围内,能找到多少个数,为集合中任一数的倍数。其实也就是求这些数倍数集合的并。以两个为例,根据容斥原理,结果等于集合A∪集合B-集合A∩B。A∩B,即为既是A的倍数,又是B的倍数,那么就是A,B最小公倍数的倍数。模拟二进制表示,某位取或不取,最后容斥一下,就得到结果了。神坑的是,很容易看错,是会有0出现的,需要排除掉。


代码:

#include <iostream>
#include <cstring>
using namespace std;
int one_amount[1050];
int refl[1050][10];
void cal()
{
    memset(refl,0,sizeof(refl));
    int cnt=0,temp;
   for(int i=0;i<1024;i++)
   {
       temp=i;
       one_amount[i]=cnt=0;
       while(temp)
       {
         if(temp%2)
         {
             one_amount[i]++;
             refl[i][cnt]=1;
         }
         cnt++;
         temp/=2;
       }
   }
}
long long gcd(long long a,long long b)
{
    if(a==0)return b;
    else return gcd(b%a,a);
}
int main()
{
    int m,x;
    unsigned long long n,store[12],tmp,ans,temp;
    cal();
    while(cin>>n>>m)
    {
        ans=0;
        int y=m,z=0;
       while(y--)
       {
           cin>>store[z];
           if(store[z]==0)
           {
               m--;
               continue;
           }
           else z++;
        }
       x=1;
       for(int i=0;i<m;i++)
           x*=2;
       for(int i=1;i<x;i++)
       {
            tmp=1;
            for(int j=0;j<m;j++)
            {
                if(refl[i][j])
                {
                    temp=gcd(tmp,store[j]);
                    tmp=tmp*store[j]/temp;
                }
            }
            if(one_amount[i]%2)
            ans+=(n-1)/tmp;
            else
            ans-=(n-1)/tmp;
       }
       cout<<ans<<endl;
    }
    return 0;
}


版权声明:欢迎交流!

相关文章推荐

Hdu 1796 How many integers can you find (容斥原理 递归及循环的一般写法)

题意:给出n和由m个元素的集合,求小于n且是集合中任意元素的倍数的数有多少个。 把集合中的0先去掉。 #include int data[20],n,m,cnt; __int64 sum; ...

HDU 1796 How many integers can you find (容斥原理)

题目:http://acm.hdu.edu.cn/showproblem.php?pid=1796 题意:给你两个数n(n 分析:先不考虑重叠的部分,把小于n,且能整除a1的数的个数求出来,即(n...
  • w20810
  • w20810
  • 2015年02月21日 18:08
  • 351

HDU 1796 How many integers can you find(容斥原理+二进制/DFS)

求n以内能够被所给的集合中的数整除的数的个数。

hdu1796 How many integers can you find----容斥原理

How many integers can you find Time Limit: 12000/5000 MS (Java/Others)    Memory Limit: 65536/32768...

HDU 1796 How many integers can you find(组合数学-容斥原理)

How many integers can you find Problem Description   Now you get a number N, and a M-integers ...
  • wujy47
  • wujy47
  • 2014年08月03日 12:31
  • 380

HDU 1796 How many integers can you find(简单容斥原理)

题目大意:有一个序列,大小为m,里面有m个不超过20的非负数,各不相同。要求在1-n中有多少个能被m个数中任意一个数整除。 题目思路:简单的容斥原理应用。就不说了直接上代码。 有两种方法,一种是D...

hdu1796 How many integers can you find(容斥原理裸)

http://acm.hdu.edu.cn/showproblem.php?pid=1796 题意:求小于n的数中有多少个能被集合m中元素整除。 思路:挑战上的裸题,还基本是看的别人的...

hdu 1796 How many integers can you find 容斥原理

传送门:hdu 1796 How many integers can you find题目大意在M个集合中,找到能被N整除(不包含N)的个数解题思路首先要解决这个题目要知道什么容斥定理! 我们先假设...

hdoj 1796 How many integers can you find(容斥原理)

题目地址:点击打开链接 题意:给定n和一个大小为m的集合,集合元素为非负整数。为1…n内能被集合里任意一个数整除的数字个数。n 解题思路:容斥原理地简单应用。先找出1...n内能被集合中任意...
  • CillyB
  • CillyB
  • 2016年11月23日 23:02
  • 237

hdoj 1796 How many integers can you find(容斥原理)

题意:
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:HDU 1796 How many integers can you find (容斥原理)
举报原因:
原因补充:

(最多只允许输入30个字)