Pytorch入门学习(九)---detach()的作用(从GAN代码分析)

本文介绍了Pytorch中detach()函数在GAN(生成对抗网络)模型中的应用,强调了detach()用于防止梯度反传至特定网络部分的重要性。在GAN的训练过程中,detach()用于确保生成器G的更新仅受其生成的假图对判别器D损失的影响,而不会反过来影响D。通过对Torch和Pytorch两种实现方式的对比,阐述了自动求导机制下detach()如何保证代码简洁且正确执行反向传播。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

(八)还没写,先跳过。。。

总说

简单来说detach就是截断反向传播的梯度流

    def detach(self):
        """Returns a new Variable, detached from the current graph.

        Result will never require gradient. If the input is volatile, the output
        will be volatile too.

        .. note::

          Returned Variable uses the same data tensor, as the original one, and
          in-place modifications on either of them will be seen, and may trigger
          errors in correctness checks.
        """
        result = NoGrad()(self)  # this is needed, because it merges version counters
        result._grad_fn = None
        return result

可以看到Returns a new Variable, detached from the current graph。将某个node变成不需要梯度的Varibale。因此当反向传播经过这个node时,梯度就不会从这个node往前面传播。

从GAN的代码中看detach()

GAN的G的更新,主要是GAN loss。就是G生成的fake图让D来判别,得到的损失,计算梯度进行反传。这个梯度只能影响G,不能影响D!可以看到,由于torch是非自动求导的,每一层的梯度的计算必须用net:backward才能计算gradInput和网络中的参数的梯度。

先看Torch版本的代码

local fGx = function(x)
    netD:apply(function(m) if torch.type(m):find('Convolution') then m.bias:zero() end end)
    netG:apply(function(m) if torch.type(m):find('Convolution') then m.bias:zero() end end)

    gradParametersG:zero()

    -- GAN loss
    local df_dg = torch.zeros(fake_B:size())
    if opt.use_GAN==1 then
       <
GAN (Generative Adversarial Network) 是一种深度学习型,用于生成模拟数据,如图像、音频、文本等。PyTorch 是一个广泛使用的深度学习框架,可以用来实现 GAN。 在 PyTorch 中实现 GAN,你需要定义一个生成器网络和一个判别器网络。生成器网络接收一些随机噪声作为输入,并生成与真实数据类似的数据样本。判别器网络则尝试区分生成器产生的假数据和真实数据。 训练 GAN 的过程中,生成器和判别器相互博弈。生成器的目标是生成尽可能逼真的数据以欺骗判别器,而判别器的目标是准确地区分真实数据和生成的数据。通过交替地训练生成器和判别器,GAN 可以逐渐提升生成器产生的数据质量。 在 PyTorch 中,你可以使用 nn.Module 类来定义生成器和判别器网络,使用 nn.BCELoss 作为损失函数来度量判别器的输出与真实标签之间的差异。你还可以使用优化器如 Adam 来更新网络的参数。 以下是一个简单的 PyTorch GAN 示例代码: ```python import torch import torch.nn as nn import torch.optim as optim # 定义生成器网络 class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() # 定义网络结构... def forward(self, x): # 前向传播过程... # 定义判别器网络 class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() # 定义网络结构... def forward(self, x): # 前向传播过程... # 初始化生成器和判别器 generator = Generator() discriminator = Discriminator() # 定义损失函数和优化器 criterion = nn.BCELoss() optimizer_g = optim.Adam(generator.parameters(), lr=0.001) optimizer_d = optim.Adam(discriminator.parameters(), lr=0.001) # 训练 GAN for epoch in range(num_epochs): # 更新判别器 optimizer_d.zero_grad() # 计算真实数据的判别器损失 real_images = ... real_labels = torch.ones(batch_size, 1) output_real = discriminator(real_images) loss_real = criterion(output_real, real_labels) # 计算生成数据的判别器损失 fake_images = generator(torch.randn(batch_size, latent_dim)) fake_labels = torch.zeros(batch_size, 1) output_fake = discriminator(fake_images.detach()) loss_fake = criterion(output_fake, fake_labels) # 总的判别器损失 loss_d = loss_real + loss_fake loss_d.backward() optimizer_d.step() # 更新生成器 optimizer_g.zero_grad() # 生成器生成数据并输入判别器 fake_images = generator(torch.randn(batch_size, latent_dim)) output_fake = discriminator(fake_images) # 生成器的损失(让判别器将生成数据判别为真实数据) loss_g = criterion(output_fake, real_labels) loss_g.backward() optimizer_g.step() ``` 这只是一个简单的示例代码,实际上你可能需要根据具体的问题和数据集进行更复杂的网络设计和训练策略。希望这可以帮助你入门 PyTorch 中的 GAN 实现!
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值