奇异值分解(SVD)原理详解及推导

今天学习SVD原理,查看一些博文与资料,为了方便复习,做一下学习笔记。

SVD不仅是一个数学问题,在工程应用中的很多地方都有它的身影,比如前面讲的PCA,掌握了SVD原理后再去看PCA那是相当简单的,在推荐系统方面,SVD更是名声大噪,将它应用于推荐系统的是Netflix大奖的获得者Koren,可以在Google上找到他写的文章。

满秩分解

ACm×nr ,那么存在 BCm×rr CCr×nr ,使得 A=BC ,其中B为列满秩矩阵,C为行满秩矩阵;这样的分解为矩阵的满秩分解

正交矩阵

定义

AAT=E E 为单位矩阵,AT表示“矩阵A的转置矩阵”。)或 ATA=E ,则n阶实矩阵A称为正交矩阵。

正交变换

正交矩阵是在欧几里得空间里的叫法,在酉空间里叫酉矩阵一个正交矩阵对应的变换叫正交变换,这个变换的特点是不改变向量的尺寸和向量间的夹角,那么它到底是个什么样的变换呢?看下面这张图1:
图1

通过图1,可知:

向量 x=[ab] e1 e2 相互正交的单位向量, e1 e2 相互正交的单位向量;设 oa=Me1 ob=Me2 ,其中 M 为线性变换的矩阵(即将坐标旋转)。

设置Me1 e11 模为 σ1 Me2 e21 的模为 σ2 ,则

Me1=σ1e1(1)
Me2=σ2e2(2)

通过向量的性质我们知道:
x=(e1x)e1+(e2x)e2(3)
Mx=(e1x)Me1+(e2x)Me2(4)

因为(1)与(2),则:
Mx=(e1x)σ1e1+(e2x)σ2e2(5)

在(5)中 e1x e2x 是向量的内积,我们转换成向量转置来表示:
Mx=(e1Tx)σ1e1+(e2Tx)σ2e2(6)

M=e1σ1e1T+e2σ2(e2T)(7)

通过(7)知道:
M=UΣVT(8)

其中 U 矩阵的列向量分别是e1 e2 Σ 是一个对角矩阵,对角元素分别是对应的σ1 和 σ2,V矩阵的列向量分别是 e1 e2 。上角标T 表示矩阵 V <script type="math/tex" id="MathJax-Element-39">V</script> 的转置。

总结

这就表明任意的矩阵 M 是可以分解成三个矩阵。V表示了原始域的标准正交基,U表示经过M 变换后的co-domain的标准正交基,Σ表示了V 中的向量与U中相对应向量之间的关系

未完待续。。。。。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值