看MapleSim符号如何一步解决并联机构逆运动学问题

转载 2015年11月18日 16:41:24

在多体机械中,平台的运动学分析(运动学问题)可以分为两类:正向运动学问题和逆向运动学问题。所谓正向运动学是指研究机构中一点(例如,机械手臂上终端操作机构或由并联机械操纵器支持的平台的中心)在空间中的位置随时间的演进而作的改变,其运动轨迹通过计算运动副运动的函数得到。对于逆运动学问题,情况正好相反:目的是计算运动副的运动从而实现预定的终端操作机构的轨迹。


  由于逆向运动学问题的复杂性,人们通常使用数值迭代的方式求解,所需较长的计算时间。使用数值计算方法通常会丢失机构的运动信息。在本文中,我们将描述如何在MapleSim中获得Stewart-Gough并联机械臂的逆向运动学的符号解。我们将特别描述如何使用MapleSim自动获取约束方程的Jacobian符号矩阵,让我们可以检查和研究底层的矩阵结构,从而得到符号解。得到逆向运动学符号解的一个重要优势是可以自动生成符号解的C代码,嵌入到实时硬件在环应用中。与之相反,如果使用数值迭代方法,那么难以将结果用于到实时应用中。(出自:Maple)

 

相关文章推荐

五杆机构正运动学公式、逆运动学公式MATLAB代码

在研究五杆机构的时候感觉网上的资料更多的在研究正运动学,包括机构顶端的运动轨迹、速度、加速度,缺少逆运动学的分析。当我们想用五杆机构做实际用途比如3D打印或轨迹描绘的时候逆运动学公式是必不可少的。所以...

<浅谈一个大电容并联一个小电容的问题>

在电子电路中经常会碰到这样一类电路,即在一个大的电容上还并联着一个小的电容。电容的这种接法到底起着什么样的作用?为了找出这个问题的答案,在网上查了些资料,看到很多人给出的观点几乎都集中在这一点上,那就...

Matlab Robotic Toolbox V9.10工具箱(二):正/逆运动学

matlab机器人工具箱 robotic toolbox 做运动学分析非常方便,SerialLink 类中有现成的函数:SerialLink.fkine(theta),可以直接对已经建立的机器人模型...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)