BZOJ 4174 tty的求助 莫比乌斯反演

原创 2015年07月09日 19:13:24

题目大意:求Nn=1Mm=1m1k=0nk+xm mod 998244353

假设nm都已经确定了,现在要求这坨玩应:
m1k=0nk+xm
=m1k=0(nk%m+xm+nknk%mm)
=m1k=0(nk%m+xm+nkmnk%mm)

我们一项一项考虑

d=gcd(n,m),那么有

m1k=0nk%m+xm
=dmd1k=0kd+xm
=d(mdxx%mm+md1k=0kd+x%mm)
=d(mdxx%mm+md1k=0[kd+x%mm])
=d(xx%md+x%md)
=dxd

m1k=0nkm=nmm(m1)2=nmn2

m1k=0nk%mm=dmd1k=0kdm=d2m(md1)md2=md2

故答案为
Nn=1Mm=1(dxd+nmn2md2)
=12Nn=1Mm=1(2dxd+d+nmnm)
=12(S(N)S(M)S(N)mS(M)n+min(N,M)d=1(d+2dxd)min(Nd,Md)k=1μ(k)NdkMdk)

其中S(n)=n(n+1)2

然后O(nlogn)枚举dk即可

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define M 500500
#define MOD 998244353
using namespace std;
int n,m,x;
long long ans;
int mu[M];
int prime[M],tot;
bool not_prime[M];
void Linear_Shaker()
{
    int i,j;
    mu[1]=1;
    for(i=2;i<=500000;i++)
    {
        if(!not_prime[i])
        {
            prime[++tot]=i;
            mu[i]=MOD-1;
        }
        for(j=1;prime[j]*i<=500000;j++)
        {
            not_prime[prime[j]*i]=true;
            if(i%prime[j]==0)
            {
                mu[prime[j]*i]=0;
                break;
            }
            mu[prime[j]*i]=(MOD-mu[i])%MOD;
        }
    }
}
long long Sum(long long n)
{
    return (n*(n+1)>>1)%MOD;
}
int main()
{
    int i,j;
    cin>>n>>m>>x;
    Linear_Shaker();
    ans=((Sum(n)*Sum(m)-Sum(n)*m-Sum(m)*n)%MOD+MOD)%MOD;
    if(n>m) swap(n,m);
    for(i=1;i<=n;i++)
    {
        long long temp=i+x/i*i*2;
        for(j=1;j*i<=n;j++)
            (ans+=temp*mu[j]%MOD*(n/i/j)%MOD*(m/i/j)%MOD)%=MOD;
    }
    cout<<(ans*(MOD+1>>1)%MOD)<<endl;
    return 0;
}

相关文章推荐

BZOJ 4176 Lucas的数论 莫比乌斯反演

题目大意:给定n(n≤109)n(n\leq10^9),求∑ni=1∑nj=1d(ij)\sum_{i=1}^n\sum_{j=1}^nd(ij)推错式子害死人。。。 由d|ijd|ij等价于dgc...
  • PoPoQQQ
  • PoPoQQQ
  • 2015年07月10日 18:20
  • 2696

BZOJ 3930 CQOI2015 选数 莫比乌斯反演

题目见 http://pan.baidu.com/s/1o6zajc2 此外不知道H-L #include #include #include #include #includ...
  • PoPoQQQ
  • PoPoQQQ
  • 2015年04月07日 11:16
  • 18242

BZOJ 2818(莫比乌斯反演)

最近刚看莫比乌斯反演  数学不好是硬伤啊 不过总算跑出来了 第一种是没优化的跑这题 #include #include using namespace std; const int maxn ...

[BZOJ 1101] POI 2007 Zap · 莫比乌斯 & 分块 超详细题解

初学莫比乌斯反演,翻了大量的题解才搞懂这题,所以决定自己写一个最详细的题解,虽然有些繁琐,但是每一步推导都十分详细。神犇就不要嘲讽我了2333 首先,我们定义 题目即要求 由于d是给定的,所以另 ...
  • ycdfhhc
  • ycdfhhc
  • 2016年02月05日 11:12
  • 855

BZOJ 2693 jzptab 莫比乌斯反演

BZOJ 2693 jzptab 莫比乌斯反演 题目大意:给定n,m,求i从1到n,j从1到m,的i与j的最小公倍数之和。 这题真的是有问题,难想的一批,公式恐惧症无药可救患者。。。。。。 以下...
  • LZJ209
  • LZJ209
  • 2017年03月06日 17:23
  • 138

BZOJ 3309 DZY Loves Math 莫比乌斯反演

题目大意: 枚举d=gcd(i,j),得到 现在我们只需要知道Σ[d|T]f(d)μ(T/d)的前缀和就行了 设这个函数为g(x) 观察这个函数 由于含平方因子数的μ值都为零,因此我们只考虑μ...
  • PoPoQQQ
  • PoPoQQQ
  • 2014年12月24日 12:36
  • 3131

BZOJ 2844 albus就是要第一个出场 高斯消元+线性基

题目大意:给出一个长度为n的正整数数列A。每次选出A的一个子集进行抑或(空集抑或值为0),这样就得到一个长度为2^n的数列B。将B中元素升序排序。给出一个数字m,求m的B中出现的最小位置。 ...

BZOJ 2844 高斯消元 线性基

思路: //By SiriusRen #include #include #include using namespace std; const int inf=0x7fffffff,mod=...

【bzoj2844】albus就是要第一个出场 高斯消元

首先预处理出线性基,最多32个有用的数和一堆0 依次看每一位,计算卡上界的数的个数 #include #include #include #include #include #incl...

BZOJ 2844 albus就是要第一个出场

线性基+高斯消元
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:BZOJ 4174 tty的求助 莫比乌斯反演
举报原因:
原因补充:

(最多只允许输入30个字)