poj2553The Bottom of a Graph【scc+缩点】

原创 2015年11月20日 19:23:30

Language:
The Bottom of a Graph
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 9679   Accepted: 4025

Description

We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G=(V,E) is called a directed graph. 
Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1). Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1)
Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of all nodes that are sinks, i.e., bottom(G)={v∈V|∀w∈V:(v→w)⇒(w→v)}. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0

Sample Output

1 3
2

Source

题意:如果一个点能到达一个点反过来这个点也能返回来则称他们为sink点输出sink中的点当一个点不能到达任何点时也要输出;

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<stack>
#include<vector>
#include<set>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=1001010;
int dfs_clock,scc_cnt;
int head[maxn];
bool instack[maxn];
int low[maxn],dfn[maxn];
int sccno[maxn];
int in[maxn];
int out[maxn];
stack<int>S;
vector<int>scc[maxn];
vector<int>G[maxn];
set<int>s;
struct Node{
	int from,to,next;
}A[maxn];
int MIN(int a,int b){
	return a<b?a:b;
}
void init(){
	dfs_clock=scc_cnt=0;
	memset(head,-1,sizeof(head));
	memset(low,0,sizeof(low));
	memset(dfn,0,sizeof(dfn));
	memset(sccno,0,sizeof(sccno));
	memset(in,0,sizeof(in));
	memset(out,0,sizeof(out));
	memset(instack,false,sizeof(instack));
}
void tarjan(int u,int pre){
	int v;
	dfn[u]=low[u]=++dfs_clock;
	S.push(u);instack[u]=true;
	for(int k=head[u];k!=-1;k=A[k].next){
		v=A[k].to;
		if(!dfn[v]){
			tarjan(v,u);
			low[u]=MIN(low[u],low[v]);
		}
		else if(instack[v]){
			low[u]=MIN(low[u],dfn[v]);
		}
	}
	if(low[u]==dfn[u]){
		scc_cnt++;scc[scc_cnt].clear();
		G[scc_cnt].clear();
		while(1){
			v=S.top();S.pop();
			instack[v]=false;
			sccno[v]=scc_cnt;
			scc[scc_cnt].push_back(v);
			if(u==v)break;
		}
	}
}
void suodian(int m){
	for(int i=0;i<m;++i){
		int u=sccno[A[i].from];
		int v=sccno[A[i].to];
		if(u!=v){
			G[u].push_back(v);
			in[v]++;out[u]++;
		}
	}
}
int main()
{
	int i,j,k,n,m;
	while(scanf("%d",&n),n){
		init();scanf("%d",&m);
		for(i=0;i<m;++i){
			scanf("%d%d",&A[i].from,&A[i].to);
			A[i].next=head[A[i].from];
			head[A[i].from]=i;
		}
		for(i=1;i<=n;++i){
			if(!dfn[i])tarjan(i,-1);
		}
		suodian(m);
		int flag=0;scc[scc_cnt+1].clear();
		for(i=1;i<=scc_cnt;++i){
			if(out[i]==0){
				for(j=0;j<scc[i].size();++j){
					scc[scc_cnt+1].push_back(scc[i][j]);
				}
			}
		}
		sort(scc[scc_cnt+1].begin(),scc[scc_cnt+1].end());
		for(i=0;i<scc[scc_cnt+1].size();++i){
			if(i==0)
				printf("%d",scc[scc_cnt+1][i]);
			else 
				printf(" %d",scc[scc_cnt+1][i]);
		}
		printf("\n");
		
	}
	return 0;
}


版权声明:本文为博主原创文章,未经博主允许不得转载。

POJ 2553--The Bottom of a Graph【scc缩点构图 && 求出度为0的scc && 输出scc中的点】

The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9...
  • hpuhjh
  • hpuhjh
  • 2015年08月20日 09:20
  • 478

poj2553The Bottom of a Graph【tarjan中SCC出度是1】

Description We will use the following (standard) definitions from graph theory. Let V be a nonemp...

POJ--2553--The Bottom of a Graph【tarjan缩点】

题意:告诉你顶点数和边数并输入边的信息,按从小到大输出出度为0的点。其实这道题英文我没看懂,看的图论书才懂的。 就是tarjan缩点,和POJ2186的代码一模一样,直接用2186的代码修改一下就A...
  • zzzz40
  • zzzz40
  • 2014年03月12日 21:40
  • 457

poj2553The Bottom of a Graph(强连通+缩点)

The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 7699   Acce...

poj2553 The Bottom of a Graph--Kosaraju算法 & 缩点 & 强连通分量

原题链接:http://poj.org/problem?id=2553 题意:n个点,m对点的关系,定义link点:一个点u所能到达的点,反过来都能到达u,那么点u就是link点。升序输出所...
  • LaoJiu_
  • LaoJiu_
  • 2016年09月10日 14:38
  • 246

POJ 2553 The Bottom of a Graph 强连通分量+缩点 tarjan or kosaraju

题目的意思是求有向图中满足“自己可达的顶点都能到达自己”的顶点个数 显然,在一个强连通分量中,每个点都符合要求,但是 如果强连通分量中有某个点跟外面的某个点相连了,这个强连通分量就不符合要求了,很显...

POJ 2553 - The Bottom of a Graph(强连通分量, 缩点)

题意:如果v点能够到的点,反过来也能够到v点,则称这个点为sink点,输出所有的sink点 思路:求下强连通分量,出度为0的连通分量里的点都是sink点 代码: #include...
  • CillyB
  • CillyB
  • 2017年04月28日 19:38
  • 136

【连通图|强连通+缩点】POJ-2553 The Bottom of a Graph

给出一个图,求出图上所有”自己可达的顶点都能回到自己“的点。

POJ 2553 The Bottom of a Graph 缩点之后求出度为0的强联通分量的元素

点击打开链接 The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: ...

The Bottom of a Graph poj 2553 缩点+Tarjan

The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 8...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj2553The Bottom of a Graph【scc+缩点】
举报原因:
原因补充:

(最多只允许输入30个字)