火车上的醉汉问题(一个非常深奥的问题)

N节车厢,起始于第一节车厢,随机左右游走(p=0.5),问跌落火车(n=1往左一步或者n=N往右一步)的步长期望是多少(答案是N),但是我无法证明。


目前的研究发现了一个类似于帕斯卡三角的结构嵌入在原问题中,然而这个帕斯卡三角不具有一般性,非常难求解,我只能解到N=4。


要求期望,就必须知道每种步长有多少种可能的组合,那个帕斯卡三角就是计算这些信息用的。我不认为期望可以在避开步长组合信息的情况下被求解。


我将等待答案的公布。我觉得这是我遇到的最难的问题。


update:

我尝试着计算了一下期望的增量乘子(Delta M),除了从2到3的增量是可以理解并证明是1,其他的均是无法理解的数列结构,具体结果如下:

1,  -1,  3,  -1,  7,  -1,  15,  -1,  31,  -1,  63,  -1,  127,  -1,  255,  -1,  511,  -1,  1023,  -1,  2047,  -1,  4095,  -1,  8191,  -1,  16383,  -1,  32767,  -1,  65535,  -1,  131071,  -1,  262143,  -1,  524287,  -1,  1048575

-1,  1,  -2,  3,  -3,  8,  -3,  21,  2,  55,  25,  144,  105,  377,  354,  987,  1085,  2584,  3157,  6765,  8898,  17711,  24561,  46368,  66833,  121393,  180034,  317811,  481461,  832040,  1280733,  2178309,  3393506,  5702887,  8965321,  14930352,  23633529,  39088169,  62197410

0,  -1,  1,  -3,  4,  -8,  14,  -21,  47,  -55,  154,  -144,  496,  -377,  1577,  -987,  4964,  -2584,  15502,  -6765,  48103,  -17711,  148490,  -46368,  456416,  -121393,  1397905,  -317811,  4268740,  -832040,  13002638,  -2178309,  39522143,  -5702887,  119912698,  -14930352,  363262672,  -39088169,  1099015481

同时考虑到累计增量可能暗含某种模式,我也计算了从2开始的累计增量:

1,  -1,  3,  -1,  7,  -1,  15,  -1,  31,  -1,  63,  -1,  127,  -1,  255,  -1,  511,  -1,  1023,  -1,  2047,  -1,  4095,  -1,  8191,  -1,  16383,  -1,  32767,  -1,  65535,  -1,  131071,  -1,  262143,  -1,  524287,  -1,  1048575

0,  0,  1,  2,  4,  7,  12,  20,  33,  54,  88,  143,  232,  376,  609,  986,  1596,  2583,  4180,  6764,  10945,  17710,  28656,  46367,  75024,  121392,  196417,  317810,  514228,  832039,  1346268,  2178308,  3524577,  5702886,  9227464,  14930351,  24157816,  39088168,  63245985

0,  -1,  2,  -1,  8,  -1,  26,  -1,  80,  -1,  242,  -1,  728,  -1,  2186,  -1,  6560,  -1,  19682,  -1,  59048,  -1,  177146,  -1,  531440,  -1,  1594322,  -1,  4782968,  -1,  14348906,  -1,  43046720,  -1,  129140162,  -1,  387420488,  -1,  1162261466

0,  -1,  1,  0,  4,  4,  13,  18,  41,  65,  130,  220,  416,  727,  1340,  2379,  4333,  7752,  14040,  25212,  45541,  81926,  147797,  266109,  479778,  864200,  1557648,  2806271,  5057368,  9112263,  16420729,  29587888,  53317084,  96072132,  173118413,  311945594,  562110289,  1012883065

其中2到3规律很明显2^n-1,并且可以求解。2到4是Fibonacci-1数列,然而收敛性无法证明。而2到5也很明显是3^n-1, 2到6则完全意义不明。然而当我们考虑2到7时,他看上去似乎有规律,然而却不是4^n-1:

0,  -1,  1,  -1,  5,  -1,  19,  -1,  67,  -1,  231,  -1,  791,  -1,  2703,  -1,  9231,  -1,  31519,  -1,  107615,  -1,  367423,  -1,  1254463,  -1,  4283007,  -1,  14623103,  -1,  49926399,  -1,  170459391,  -1,  581984767,  -1,  1987020287,  -1,  6784111615

这个其实是A035344,和Fibonacci有关,存在一个类似的根式通项,但是要求解收敛性则相当复杂。


这种复杂的数学结构可能暗示这个问题无法用归纳法求解。然而hint说可以用归纳法求解,这就很神奇了。。。继续等待答案。。。


Update:

问题终于出现了转机!最近我突然查到了一个叫“吸收态马尔可夫链”的数学模型,而那个模型正好就是求解这个问题的。


核心思想: 吸收态马尔可夫链求解此问题的关键时利用了步数和访问车厢次数之间的对偶性。如果假设起始车厢是第一个被访问的车厢,那么到跌落火车之前所访问的车厢次数正好是跌落火车所需要的步数。因此可以避免对具体步数组合的计算,而直接通过计算访问车厢次数的期望来求解原问题!


SOLUTION:

答案终于来了,居然是利用了期望的线性性质!这是我见过的最巧妙的答案,仅仅利用期望之间的关系,而完全避开了概率计算!

核心思想是:假设我们平均用E(n)步掉下火车。如果我们一开始向左走,那么就直接掉下去了,但是有1/2概率向左走,所以其实是1/2 x 1步掉下去。那么向右的话,我们来到第二节车厢,从第二节车厢开始,我们可以平均走E(n-1)步,然后:1,从车尾掉下去,2.回到第一节车厢。同时,注意到我们只有(n-1)/n的概率回到第一节车厢。一旦回到第一节车厢,那么我们需要再平均走E(n)步掉下火车。

综上所述:E(n) = 1/2x1 + 1/2(1 + E(n-1) + (n-1)/n E(n))

我们已经知道E(2)=2,所以用归纳法即可证明!


  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值