对换子的深层含义

对换子操作和求根符号其实就是一枚硬币的两个面,其本质是同一个东西。因为求根符号的存在,使得区分两个根成为可能,所以一切对换子都必须可以拆解为对两个根的对调。换句话说,伽罗瓦群中的一切置换都可以写成对两个根对调的序列,否则它就不是伽罗瓦群。

然而,必定存在某些置换,他们不是对调,比如说一次性换三个根或者五个跟的那种。这些操作也可以写成对换子的形式,也就是执行某种操作,执行另外某种操作,再逆执行之前的操作,这也是一种广义的对换子。同样可以保证潜在求根公式的相位不改变。所以只要再保证经过这一系列操作后,所有的根都可以归位,则求根公式依然存在。

所以,理论上我们可以定义一个新的算符,它类似于求根算符,但是求根算符只能区分2个根,这个新算符可以区分,比如说,5个根。那么将A_5中所有的置换都看成是合法的对根的互换操作,则依然能写出求根公式。

这就是布林根式BR的原理了。

那么执着于寻找普通的求根公式的表达式,而不去想这种广义求根公式存在的合理性,未免过于狭隘了。既然我们习惯用\sqrt{2}来表示x^2-2=0的根,那为什么不习惯用BR(2)来表示x^5+x+2=0的根呢?把数域分为实数,有理数,无理数是不是太过笼统了(剩下的不知道的都叫超越数了)?

补充:

为什么一定要是对换子?如果说只考虑进行某种操作然后再复原某种操作,那样的组合很多,那么为什么一定要特别关注对换子呢?这个问题我思考了很多天,直到最近我突然想明白了!这一切都是为了满足交换律!也就是说,不论怎么操作,操作顺序改变不应该影响最终结果。这就是根式的性质,不论什么顺序换根,最终的结果是一样的。这也就是为什么根式满足交换律。而为了满足交换律,首先就必须满足正规子群性,也就是xH=Hx。但是光这样还不够,还需要一种更强的交换性,这就是xHyH=yHxH, 二者相结合就有xyx^y^ in H.这就是对换子的起源了!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值