关于OpenCV图像操作的默认参数问题

原创 2016年06月01日 22:11:01


本系列文章由 @yhl_leo 出品,转载请注明出处。
文章链接: http://blog.csdn.net/yhl_leo/article/details/51559490


在使用OpenCV以及其他开源库时,往往一个容易忽略的问题就是使用默认参数,尤其是图像处理,会导致内存中的图像数据变换后被不同程度上被修改!

下面给出几个示例,帮助理解。

1. warpAffine

warpAffine是图像仿射变换函数,函数定义为:

C++: void warpAffine(
    InputArray src, 
    OutputArray dst, 
    InputArray M, 
    Size dsize, 
    int flags=INTER_LINEAR, 
    int borderMode=BORDER_CONSTANT, 
    const Scalar& borderValue=Scalar())

其中,
- M是一个2x3的转换矩阵,关于获取方法,可使用getRotationMatrix2D()函数:

warpAffine

  • flags是一个标识符,结合了内插方法(interpolation methods)和可选项WARP_INVERSE_MAP

    • INTER_LINEAR - a bilinear interpolation (used by default) 双线性插值
    • INTER_NEAREST - a nearest-neighbor interpolation 最邻近插值
    • INTER_AREA - resampling using pixel area relation. It may be a preferred method for image decimation, as it gives moire’-free results. But when the image is zoomed, it is similar to the INTER_NEAREST method. 基于区域像素关系重采样
    • INTER_CUBIC - a bicubic interpolation over 4x4 pixel neighborhood 4x4邻域双三次插值
    • INTER_LANCZOS4 - a Lanczos interpolation over 8x8 pixel neighborhood 8x8邻域兰索斯插值
    • WARP_INVERSE_MAP - M is the inverse transformation (warp) 等价于CV_WARP_INVERSE_MAP fills all of the destination image pixels M是warp的逆变换
  • borderMode: pixel extrapolation method 像素外推方法

    • BORDER_CONSTANT - pad the image with a constant value (used by default) 补上定值,如果使用则补上的定值设置为borderValue的值(默认为0)
    • BORDER_TRANSPARENT - the corresponding pixels in the destination image will not be modified at all 不做任何修改
    • BORDER_REPLICATE - the row or column at the very edge of the original is replicated to the extra border 将原始数据的行方向/列方向的边缘像素值作为外推边界

因为图像是离散的整数格网,一旦对像素值或者其下标进行浮点位运算,得到的结果都是近似值!几种内插方法各有优劣,双线性插值可以视为一个折中选择,即计算量不算很大(比基于区域和邻域块的方法小很多),效果也过得去(一般比最邻近插值更好),源码编写者大概是基于此考虑,将其设置为默认参数,但是针对某些具体的应用,绝不是最佳选择,例如对二值图像进行旋转,我们希望旋转后的图像仍然是二值的,那选择最临近插值可能就更合适。关于边界外推模式,这里贴上OpenCV官方文档:Adding borders to your images

2. imread & imwrite

以前写过一篇博客,讲述了OpenCV图像读取与存储的一些细节:Opencv 图像读取与保存问题, 其中有一些非常容易忽视的细节,例如使用imread()读取图像时,参数flags的值默认是1,也就是说默认读取的是3通道彩色图像,如果待读取的图像是单通道或者4通道的,也会被转成3通道图像,这样读取的数据就不是你真正想要的。

另外,使用imwrite()存储图像时,params参数也至关重要,其中包括特定图像存储编码参数设置,如果调用时缺省,就会使用默认参数,例如存储JPEG图像,图像压缩质量默认设置为95(范围为0~100,数值越大质量越好),存储为PNG时,压缩级别默认为3(0~9 越大压缩越厉害)。

3. Demo

生成一个简单的单通道200x200的二值图像127,255,之所以不使用0, 255,是为了使有些参数的使用对结果的影响更加明显:

demo_testtest1.png

局部放大图:

test1-localtest1-local

以下面这段代码为例,首先使用

    cv::Mat image = cv::imread("test1.png", IMREAD_UNCHANGED);
    const int cols = image.cols;
    const int rows = image.rows;

    cv::Mat R = cv::getRotationMatrix2D(
        cv::Point2f(
        static_cast<float>(cols/2), 
        static_cast<float>(rows/2)), 
        30.0, 
        1.0);

    cv::Mat r_image/*(rows,cols,CV_8UC1, cv::Scalar(0))*/;
    cv::warpAffine( 
        image, 
        r_image, 
        R, 
        image.size(), 
        INTER_LINEAR,
        BORDER_CONSTANT);

//  std::vector<int> compress_param;
//  compress_param.push_back(CV_IMWRITE_PNG_COMPRESSION);
//  compress_param.push_back(0);

    cv::imwrite("test1-r-l_c.png", r_image/*, compress_param*/);

warpAffine()imwrite()函数都先使用默认参数,并且旋转后的矩阵r_image在声明的时候,不进行初始化,即图像旋转后插值方式为双线性插值,边缘外推方式为自动补为0:

l-cl_c

让我们放大局部:

l_c-locall_c-local

warpAffine()函数中默认参数修改INTER_LINEAR -> INTER_NEAREST, BORDER_CONSTANT -> BORDER_TRANSPARENT ,即插值方法为最临近插值,边界不做任何调整(保持Mat的初始值,若未初始化,则会先进行初始化):

n-tn_t

同样放大局部:

n_t-localn_t-local

可以看出两者之间的明显区别,后者在边缘部分会保留原始数据的数据数值,但是为什么边界外推的像素颜色值是那样的,前面已经讲过:边界不做任何调整(保持Mat的初始值,若未初始化,则会先进行初始化),其中初始化值并不是0或者黑色。作为验证,我们在声明r_image的时候,对其进行初始化cv::Mat r_image(rows,cols,CV_8UC1, cv::Scalar(0));:

n_t-2n_t-2

最后,再把图像存储压缩参数进行设置,即取消掉对compress_param的注释,虽然两个结果视觉上已经看不出差异,但是从文件大小上可以发现,压缩级为默认值(3)的图片大小为1.31KB,而压缩级为0的图片大小为39.3KB~真的差了很多,当然如果存储的JPG文件,分别使用下面的命令:

// 1
cv::imwrite("test1-r-n_t.jpg", r_image);

// 2
std::vector<int> compress_param;
compress_param.push_back(IMWRITE_JPEG_QUALITY);
compress_param.push_back(100);
cv::imwrite("test1-r-n_t-2.jpg", r_input, compress_param);

让我们对比局部放大图:

11

22

明显可以看出,使用默认参数保存时,图像质量已经出现只管的下降,可以想象,如果不停地循环读取和保存同一幅图像,那么图像的质量将会以0.95的n次幂的速度降低。

4. Summary

讲述了那么多,还是回归到主题,很多时候为了方便大家使用,开源库的一些函数都会提供默认参数,而缺省参数的设置主要是基于能够适用大多数用户的基本需求,但是并不一定是性能或效果最佳,为了获得更好的结果,必须了解传入函数的各个参数的意义,针对现实的需求选择适合自己的,不然你的成果很有可能就失败在这些细小的边边角角上。

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

openCV基础函数imread第二个参数

imread是学OpenCV 的第一个函数了,一直都用默认的方式也就是cv::imread("图像名"); 但是在执行一个简单的图像锐化算法的时候输出图像总是输入图像的1/3,请教师兄后才知道是图像...
  • ASKLW
  • ASKLW
  • 2017年06月12日 00:28
  • 176

OpenCV学习笔记(四十)——再谈OpenCV数据结构Mat详解

我记得开始接触OpenCV就是因为一个算法里面需要2维动态数组,那时候看core这部分也算是走马观花吧,随着使用的增多,对Mat这个结构越来越喜爱,也觉得有必要温故而知新,于是这次再看看Mat。 M...

OpenCV学习笔记

OpenCV中创建矩阵后访问其中的元素出现错误: Mat dst(image_width,image_height,CV_64FC1,Scalar(0)); dst.at(0,0) = 0; 出现如下...

OPENCV中SVM参数解析

先来看一下什么是SVM(支持向量机) SVM是一种训练机器学习的算法,可以用于解决分类和回归问题,同时还使用了一种称之为kernel trick(支持向量机的核函数)的技术进行数据的转换,然后再...

对于多线程访问同一变量是否需要加锁的问题

对于多线程访问同一变量是否需要加锁的问题,先前大家都讨论过。今天用代码验证了一下之前的猜想:32位CPU与内存的最小交换数据为4字节/次,这也是结构体要对齐4字节的原因。在物理上,CPU对于同一4字节...

windows核心编程之进程间共享数据

有时候我们会遇到window进程间共享数据的需求,比方说我想知道系统当前有多少某个进程的实例。我们可以在程序中定义一个全局变量,初始化为0,每当程序启动后就加1,当然我们我们可以借助第三方介质来储存这...

OpenCv学习笔记(二)--Mat矩阵(图像容器)的创建及CV_8UC1,CV_8UC2等参数详解

(一)Mat矩阵(图像容器)创建时CV_8UC1,CV_8UC2等参数详解1--Mat不但是一个非常有用的图像容器类,同时也是一个通用的矩阵类 2--创建一个Mat对象的方法很多,我们现在先看一下Ma...
  • maweifei
  • maweifei
  • 2016年04月22日 16:28
  • 11651

OpenCV在未知相机内参数情况下的立体图像矫正方法及注意事项

很多时候我们不知道摄像机的内参数矩阵,并且我们也不太关注内参数到底是多少,因为我们仅仅关心如何得到两幅图像的稠密匹配,或者两幅图像的差别——例如我们只想计算两幅图像的视差图,或者说得到两幅立体图像对的...

OpenCV在未知相机内参数情况下的立体图像矫正方法

很多时候我们不知道摄像机的内参数矩阵,并且我们也不太关注内参数到底是多少,因为我们仅仅关心如何得到两幅图像的稠密匹配,或者两幅图像的差别——例如我们只想计算两幅图像的视差图,或者说得到两幅立体图像对的...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:关于OpenCV图像操作的默认参数问题
举报原因:
原因补充:

(最多只允许输入30个字)