HDU 1796 How many integers can you find(组合数学-容斥原理)

本文探讨了如何计算1到N-1范围内能被给定的M个整数中任意一个整除的数的数量。通过容斥原理解决该问题,并提供了一个具体的C++实现示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

How many integers can you find


Problem Description
  Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
 

Input
  There are a lot of cases. For each case, the first line contains two integers N and M. The follow line contains the M integers, and all of them are different from each other. 0<N<2^31,0<M<=10, and the M integer are non-negative and won’t exceed 20.
 

Output
  For each case, output the number.
 

Sample Input
  
12 2 2 3
 

Sample Output
  
7
 

Author
wangye
 

Source
 

Recommend
wangye   |   We have carefully selected several similar problems for you:   1793  1794  1797  1795  1798 
 

题目大意:
给你1个数n,再给m个数,问你1~n-1里面有多少个数能被这m个数的任意一个数整除。

解题思路:
利用容斥原理就可以解决。

解题代码:
#include <iostream>
#include <cstdio>
#include <vector>
using namespace std;

typedef long long ll;
int n,m,a[20];

ll gcd(ll a,ll b){
    return b>0 ? gcd(b,a%b):a;
}

int main(){
    while(scanf("%d%d",&n,&m)!=EOF){
        int ans=0;
        vector <int> v;
        for(int i=0;i<m;i++){
            scanf("%d",&a[i]);
            if(a[i]>0) v.push_back(a[i]);
        }
        m=v.size();
        for(int i=1;i<(1<<m);i++){
            int cnt=0;
            ll x=1;
            for(int t=0;t<m;t++){
                if(i&(1<<t)){
                    cnt++;
                    x=x*v[t]/gcd(x,v[t]);
                }
            }
            if( cnt&1 ) ans+=(n-1)/x;
            else ans-=(n-1)/x;
        }
        cout<<ans<<endl;
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

炒饭君

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值