数据结构 练习 19-活动选择问题的实现(动态规划 和 贪心)

本文探讨了活动选择问题,旨在寻找能进行的最多活动数,采用动态规划和贪心策略。作者首先尝试使用动态规划解决,但由于困难转向贪心方法,并提供了贪心算法的思路。同时,文章还引入了背包问题,包括0-1背包和部分背包问题,通过链接分享了相关资源,并给出了部分代码实现。
摘要由CSDN通过智能技术生成

问题叙述:如下图表示活动的开始和结束时间,s[i],开始时间;f[j]结束时间。现在要进行一些列如下活动,注意每个时间段只能进行一场活动,也就是活动不能同时进行,要求举行的活动次数最多。求调度方法。


  老规矩,动态规划,要找出两个问题:

1,子问题的最优解;

2,子问题是什么。

abviously,本问题的最优解为:活动数的次数最多,子问题是:看递推公式

设c[i]为第i个 位置处的活动次数.......做不出来了,以后补充。

 

 

本想用动态规划试试做做,操蛋的做不出来,算了还是贪心吧,毕竟贪心最简单对于活动调度,不过有个证明过程。先上代码吧。

#include<iostream>
using namespace std;

//s 活动开始时间的数组,f活动结束时间的数组,n 数组的大小;
const int N=11;
void GreedySelector(int* s,int* f,int n )
{
  bool A[N];
  A[0]=true;
  int j=0;
  for(int i=1;i<N;++i)
  {
  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值