应用Sift算子的模式识别方法 内核篇

本文介绍了使用SIFT特征进行模式识别的方法,包括通过K-means聚类生成BOW模型,SVM训练以及测试图像的特征匹配。详细步骤涉及特征提取、距离计算和SVM预测,旨在实现图像的精准分类。同时,文章阐述了SIFT特征匹配的原理,用于确定两图像间对应特征的角度关系。更多计算机视觉的内容,可在作者的博客和微博中找到。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总的来说,模式识别方法分两步:train&predict.
经过谭敏师姐细心讲解和细读 siftdemov4 code,将这两部的理解解释如下:
(以下提到的feature都是指sift feature)


一、train

1.提取+/- sample的feature,每幅图提取出的sift特征个数不定(假设每个feature有128维)

2.利用聚类方法(e.g K-means)将不定数量的feature聚类为固定数量的(比如10个)words即BOW(bag of word)

3.normalize,并作这10个类的直方图e.g [0.1,0.2,0.7,0...0];

4.将each image的这10个wor

评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值