应用Sift算子的模式识别方法 内核篇

本文介绍了使用SIFT特征进行模式识别的方法,包括通过K-means聚类生成BOW模型,SVM训练以及测试图像的特征匹配。详细步骤涉及特征提取、距离计算和SVM预测,旨在实现图像的精准分类。同时,文章阐述了SIFT特征匹配的原理,用于确定两图像间对应特征的角度关系。更多计算机视觉的内容,可在作者的博客和微博中找到。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总的来说,模式识别方法分两步:train&predict.
经过谭敏师姐细心讲解和细读 siftdemov4 code,将这两部的理解解释如下:
(以下提到的feature都是指sift feature)


一、train

1.提取+/- sample的feature,每幅图提取出的sift特征个数不定(假设每个feature有128维)

2.利用聚类方法(e.g K-means)将不定数量的feature聚类为固定数量的(比如10个)words即BOW(bag of word)

3.normalize,并作这10个类的直方图e.g [0.1,0.2,0.7,0...0];

4.将each image的这10个wor

### OpenCV 图像处理与识别算法实现 #### 一、图像预处理技术 为了提高后续图像识别的效果,通常会先对输入图像进行一系列预处理操作。这些操作包括但不限于去噪和平滑化。 - **高斯模糊** 是一种常见的平滑滤波器,可以有效减少噪声的影响: ```python import cv2 img = cv2.imread('image.jpg') blurred_img = cv2.GaussianBlur(img, (5, 5), 0)[^1] ``` 此代码片段展示了如何利用 `cv2.GaussianBlur` 函数来执行高斯模糊运算,其中 `(5, 5)` 表示卷积核尺寸,而最后一个参数控制标准差。 #### 二、边缘检测方法 Canny 边缘检测是一种多级别的边缘探测算子,在保持低错误率的同时能够捕捉弱边和强边之间的连接关系。 ```python edges = cv2.Canny(blurred_img, threshold1=100, threshold2=200) ``` 上述命令通过调整两个阈值参数实现了不同强度的边缘提取效果。 #### 三、形态学变换 形态学操作如膨胀(Erosion) 和腐蚀(Dilation),常被用来清理二值化的轮廓结构,增强目标区域连通性和去除细小干扰物。 ```python kernel = np.ones((5,5),np.uint8) dilated_edges = cv2.dilate(edges,kernel,iterations = 1) eroded_image=cv2.erode(dilated_edges,kernel,iterations = 1) ``` 这里定义了一个简单的方形内核,并分别进行了膨胀和侵蚀两次基本形态学变化。 #### 四、特征点检测与描述符计算 SIFT(尺度不变特征变换)以及 ORB(Oriented FAST and Rotated BRIEF)都是广泛使用的局部特征描述工具,适用于各种场景下的物体匹配任务。 对于 SIFT 特征点提取而言, ```python sift = cv2.SIFT_create() keypoints_sift, descriptors_sift = sift.detectAndCompute(gray_img,None) ``` 而对于 ORB 来说,则有更高效的实现方式适合移动设备端部署: ```python orb = cv2.ORB_create(nfeatures=1500) keypoints_orb, descriptors_orb = orb.detectAndCompute(gray_img, None) ``` 这两种算法均能有效地定位出具有代表性的兴趣点及其对应的描述向量集合。 #### 五、模板匹配与对象追踪 当已知待查找的目标模式时,可以直接采用基于灰度相似度比较的方式完成精确定位;而在动态视频流环境中跟踪感兴趣的对象则需要用到诸如 CAMShift 这样的自适应手段。 CAMShift 的工作原理在于迭代更新候选窗口位置直至收敛于最佳估计处。具体流程涉及以下几个方面的工作[^3]: - 计算初始矩形框内的颜色直方图分布; - 应用反向投影映射至整幅画面空间上形成概率密度场; - 基于此权重矩阵求解质心坐标作为新的中心点偏移量; - 调整宽度高度比例因子以贴合实际形状变化趋势。
评论 20
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值