本栏目(Machine learning)包括单参数的线性回归、多参数的线性回归、Octave Tutorial、Logistic Regression、Regularization、神经网络、机器学习系统设计、SVM(Support Vector Machines 支持向量机)、聚类、降维、异常检测、大规模机器学习等章节。内容大多来自Standford公开课machine learning中Andrew老师的讲解和其他书籍的借鉴。(https://class.coursera.org/ml/class/index)
第九讲. 聚类——Clustering
===============================
(一)、什么是无监督学习?
(二)、KMeans聚类算法
(三)、Cluster问题的(distortion)cost function
(四)、如何选择初始化时的类中心
(五)、聚类个数的选择
=====================================

本文主要介绍了无监督学习中的聚类方法,特别是KMeans算法。内容包括无监督学习的概念,KMeans的工作原理,成本函数,初始化类中心的方法,以及聚类数量的选择策略。通过实例解释了聚类过程,并提出了肘部法则来确定最佳聚类数量。
最低0.47元/天 解锁文章
7万+

被折叠的 条评论
为什么被折叠?



