聚类算法是ML中一个重要分支,一般采用unsupervised learning进行学习,本文根据常见聚类算法分类讲解K-Means, K-Medoids, GMM, Spectral clustering,Ncut五个算法在聚类中的应用。
Clustering Algorithms分类
1. Partitioning approach:
建立数据的不同分割,然后用相同标准评价聚类结果。(比如最小化平方误差和)
典型算法:K-Means, K-Medoids
2. Model-based:
对于每个类假定一个分布模型,试图找到每个类最好的模型
典型算法:GMM(混合高斯)
3. Dimensionality Reduction Approach:
先降维,再聚类
典型算法:Spectral clustering,Ncut
1. Partitioning approach
1.目标:
找出一个分割,使得距离平方和最小
2.方法:
Global optimal : 枚举所有partition
Heuristic method:K-Means, K-Medoids
3.K-Means算法:
1. 将数据分为k个非空子集
2. 计算每个类中心点(k-means<centroid>中心点是所有点的average),记为seed point
3. 将每个object聚类到最近seed point
4. 返回2,当聚类结果不再变化的时候stop
复杂度:
O(kndt)
-计算两点间距离:d
-指定类:O(kn) ,k是类数
-迭代次数上限:t

本文介绍了聚类算法的重要分支,包括K-Means、K-Medoids、GMM(高斯混合模型)、Spectral Clustering和Ncut。K-Means与K-Medoids是基于划分的算法,GMM是基于模型的算法,Spectral Clustering和Ncut则是降维方法。文章详细阐述了各个算法的原理、优缺点以及复杂度,并对比了K-Means与GMM的区别。
最低0.47元/天 解锁文章
1709

被折叠的 条评论
为什么被折叠?



