Robust PCA 学习笔记

本文是关于Robust PCA的学习笔记,探讨了如何处理高幅度的尖峰噪声,区别于PCA,主要解决低秩矩阵B*与稀疏噪声矩阵A*的分解问题。文章介绍了矩阵分解的不同条件,精确恢复的条件,以及优化算法如增广拉格朗日乘子(ADM)方法。实验部分展示了Robust PCA在视频数据上的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

很久没有写学习笔记了,年初先后忙考试,忙课程,改作业,回家刚安定下来,读了大神上学期给的paper,这几天折腾数学的感觉很好,就在这里和大家一起分享一下,希望能够有所收获。响应了Jeffrey的建议,强制自己把笔记做成英文的,可能给大家带来阅读上的不便,希望大家理解,多读英文的东西总没坏处的。这里感谢大神和我一起在本文手稿部分推了一些大牛的“ easily achieved”stuff... 本文尚不成熟,我也是初接触Robust PCA,希望各位能够拍砖提出宝贵意见。


Robust PCA

Rachel Zhang

 

1. RPCA Brief Introduction

1.     Why use Robust PCA?

Solve the problem withspike noise with high magnitude instead of Gaussian distributed noise.


2.     Main Problem

Given C = A*+B*, where A*is a sparse spike noise matrix and B* is a Low-rank matrix, aiming at recoveringB*.

B*= UΣV’, in which U∈Rn*k ,Σ∈Rk*k ,V∈Rn*k


3.     Difference from PCA

Both PCA and Robust PCAaims at Matrix decomposition, However,

In PCA, M = L0+N0,    L0:low rank matrix ; N0: small idd Gaussian noise matrix,it seeks the best rank-k estimation of L0 by minimizing ||M-L||2 subjectto rank(L)<=k. This problem can be solved by SVD.

In RPCA, M = L0+S0, L0:low rank matrix ; S0: a sparse spikes noise matrix, we’lltry to give the solution in the following sections.

 



2. Conditionsfor correct decomposition

4.     Ill-posed problem:

Suppose sparse matrix A* and B*=eiejTare the solution of this decomposition problem.

1)       With the assumption that B* is not only low rank but alsosparse, another valid sparse-plus low-rank decomposition might be A1= A*+ eiejT andB1 = 0, Therefore, we need an appropriatenotion of low-rank that ensures that B* is not too sparse. Conditionswill be imposed later that require the space spanned by singular vectors U andV (i.e., the row and column spaces of B*) to be “incoheren

评论 58
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值