TensorFlow-1: 如何识别数字

原创 2017年04月26日 10:35:50

识别数字在机器学习任务中的地位和 Hello World 在编程中是一样的。

主要步骤:

  1. 获得数据:from Yann LeCun’s website
  2. 建立模型:softmax
  3. 定义 tensor,variable:X,W,b
  4. 定义损失函数,优化器:cross-entropy,gradient descent
  5. 训练模型:loop,batch
  6. 评价:准确率

1. 获得数据

  • 来自 Yann LeCun’s website:http://yann.lecun.com/exdb/mnist/
  • 分为 train,test,validate,每个 X 代表一个图片,y 是它的 label
  • 其中图片由 28*28 像素组成,转化成 array 的形式,变成 1*784
  • y 变为 one-hot 的形式,即属于哪个数字,就在哪个位置上为 1, 其余为 0

目标:给了 X 后,预测它的 label 是属于 0~9 类中的哪一类

如果想要看数据属于多类中的哪一类,首先可以想到用 softmax 来做。


2. 建立模型

softmax regression 有两步:

  1. 把 input 转化为某类的 evidence
  2. 把 evidence 转化为 probabilities

1. 把 input 转化为某类的 evidence

  • 某一类的 evidence 就是像素强度的加权求和,再加上此类的 bias。
  • 如果某个 pixel 可以作为一个 evidence 证明图片不属于此类,则 weight 为负,否则的话 weight 为正。
    下图中,红色代表负值,蓝色代表正值:

2. 把 evidence 转化为 probabilities

简单看,softmax 就是把 input 先做指数,再做一下归一:

  • 归一的作用:好理解,就是转化成概率的性质
  • 为什么要取指数:在 《常用激活函数比较》写过
    http://www.jianshu.com/p/22d9720dbf1a
    • 第一个原因是要模拟 max 的行为,所以要让大的更大。
    • 第二个原因是需要一个可导的函数。

用图形表示为:

上面两步,写成矩阵形式:

模型的代码只有一行:
y = tf.nn.softmax(tf.matmul(x, W) + b)


3. 定义 tensor 和 variable:


4. 定义损失函数,优化器:

用 cross-entropy 作为损失来衡量模型的误差:

其中,y 是预测, y′ 是实际 .

按照表面的定义,代码只有一行:

cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

不过因为上面不稳定,所以实际用:

cross_entropy = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))

然后用 backpropagation, 且 gradient descent 作为优化器,来训练模型,使得 loss 达到最小:

train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)


5. 训练模型

for _ in range(1000):
  batch_xs, batch_ys = mnist.train.next_batch(100)
  sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

6. 评价

看 y 和 y′ 有多少相等的,转化为准确率。
再测试一下 test 数据集上的准确率,结果可以达到 92%。

correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))

这只是最简单的模型,下次看如何提高精度。

完整代码和注释:
温馨提示,用web打开,代码格式比较好看

"""A very simple MNIST classifier.
See extensive documentation at
https://www.tensorflow.org/get_started/mnist/beginners
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import sys

from tensorflow.examples.tutorials.mnist import input_data

import tensorflow as tf

FLAGS = None


def main(_):
  # Import data
  mnist = input_data.read_data_sets(FLAGS.data_dir, one_hot=True)

  # Create the model
  x = tf.placeholder(tf.float32, [None, 784])   
        # a 2-D tensor of floating-point numbers
        # None means that a dimension can be of any length
  W = tf.Variable(tf.zeros([784, 10]))
  b = tf.Variable(tf.zeros([10]))
  y = tf.matmul(x, W) + b
        # It only takes one line to define it

  # Define loss and optimizer
  y_ = tf.placeholder(tf.float32, [None, 10])

  # The raw formulation of cross-entropy,
  #
  #   tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(tf.nn.softmax(y)),
  #                                 reduction_indices=[1]))
                # tf.reduce_sum adds the elements in the second dimension of y, 
                # due to the reduction_indices=[1] parameter.
                # tf.reduce_mean computes the mean over all the examples in the batch.
  #
  # can be numerically unstable.
  #
  # So here we use tf.nn.softmax_cross_entropy_with_logits on the raw
  # outputs of 'y', and then average across the batch.

  cross_entropy = tf.reduce_mean(
      tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
  train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
        # apply your choice of optimization algorithm to modify the variables and reduce the loss.

  sess = tf.InteractiveSession()
        # launch the model in an InteractiveSession
  tf.global_variables_initializer().run()
        # create an operation to initialize the variables

  # Train~~stochastic training
  for _ in range(1000):
    batch_xs, batch_ys = mnist.train.next_batch(100)
            # Each step of the loop, 
            # we get a "batch" of one hundred random data points from our training set.
    sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})

  # Test trained model
  correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
            # use tf.equal to check if our prediction matches the truth
            # tf.argmax(y,1) is the label our model thinks is most likely for each input, 
            # while tf.argmax(y_,1) is the correct label.
  accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
            # [True, False, True, True] would become [1,0,1,1] which would become 0.75.
  print(sess.run(accuracy, feed_dict={x: mnist.test.images,
                                      y_: mnist.test.labels}))
            # ask for our accuracy on our test data,about 92%

if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument('--data_dir', type=str, default='/tmp/tensorflow/mnist/input_data',
                      help='Directory for storing input data')
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

学习资料:
https://www.tensorflow.org/get_started/mnist/beginners

今天开始系统学习 TensorFlow,大家有什么问题可以留言,一起讨论学习。


推荐阅读
历史技术博文链接汇总
也许可以找到你想要的

版权声明:本文为博主原创文章,未经博主允许不得转载。

相关文章推荐

Android设计模式学习之观察者模式

观察者模式在实际项目中使用的也是非常频繁的,它最常用的地方是GUI系统、订阅——发布系统等。因为这个模式的一个重要作用就是解耦,使得它们之间的依赖性更小,甚至做到毫无依赖。以GUI系统来说,应用的UI...

关注CSDN程序人生公众号,轻松获得下载积分

关注公众号 在公众号里回复“”秘密“”两个字 返回 http://task.csdn.net/m/task/home?task_id=398 领取奖励 提示:根据公众号里的自动回复,完成...

属性动画----把图片渐渐变小不见(主函数MainActivity 页面)(XML布局)(本布局和渐变布局一样)

LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:app="http://schema...

JavaEE 6及以上版本的web.xml问题?

JavaEE 6及以上版本的web.xml问题?MyEclipse JavaEE 6版本开始web.xml突然消失不见?没这回事,只是不太必须而已,有需要的项目可以自行进行添加或在创建项目的时候点击n...

Android 图片毛玻璃的实现方法

注:本文的高斯模糊只能显示,如果想要保存模糊后的图片,请参考另一篇文章:http://blog.csdn.net/fan7983377/article/details/51568059 效果...

目标检测和跟踪小结

一、目标检测目标检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测。1.静态背景 背景差分法 帧间差分法 光...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)