图像质量评价在计算机视觉,人工智能,高清视频传输上面有很广泛的应用。目前,图像质量评价主要分为三个方向,有参考图像的质量评价,半参考的图像质量评价,以及无参考的图像质量评价。但是,个人认为,无参考图像质量评价才是最具挑战性和实用性的。所以,本文主要写一些无参考图像质量评价方法。
在介绍无参考图像质量评价方法之前,先介绍一些常用的有参考的图像质量评价方法。主要包括:信噪比,峰值信噪比,结构相似度。
关注公众号,获取更多信息
均方根误差
均方根误差在图像的质量评价中相当于一个中间的评价指标,很多后续的评价指标都是沿用均方根误差。均方根误差主要是评价已知图像和退化图像之间误差大小。其实这个指标跟最小二乘的原理多少有些类似,也跟统计知识的误差统计求标准差和方差是一样的。
其基本公式为:
RMSE = sqrt(1/mn * E(I - F))
其中,E(I - F) 是退化图像与真实图像之间每个像素的差值的平方和
峰值信噪比
一般峰值信噪比在图像的评价中使用的较多,公式为:
其中,MN是图形的大小,M*N,f 是真实图像,f~是退化图像
结构相似度
结构相似度(SSIM)是来源于结构相似理论,用来测量两幅图像的结构相似性大小,其最大值为1。尤其反映了图像的轮廓,细节等的相似度。结构相似度可以表示为:
其中,L()表示亮度变化,c()表示差异变化,s()是结构变化。
其中,f 和g 表示两幅图像,uf 和 ug 表示图像的均值,Ef和Eg 表示它们的方差,Efg表示它们的协方差。C1,C2,C3为比较小的常数,用来确保分母不等于零。