三种SVM的对偶问题

一、SVM原问题及要变成对偶问题的原因

对于SVM的,我们知道其最终目的是求取一分类超平面,然后将新的数据带入这一分类超平面的方程中,判断输出结果的符号,从而判断新的数据的正负。而求解svm分类器模型,最终可以化成如下的最优化问题:

minw,bs.t.12w21yi(wxi+b)0i=1,2,...,N
上式中, yi 对应样本 xi 的标签。
我们的目的是求出上述最优化问题的最优解, w b ,从而得到分类超平面:
wx+b=0
进而得到分类决策函
f(x)=sign(wx+b)
但是在求解这一最优化问题时,求解较为困难,且对于线性不可分的数据无法得到较好的分类超平面,因此根据拉格朗日对偶性,引进原最优化问题的对偶问题,通过求解对偶问题得到原始问题的最优解。
对偶问题的引进有两个方面,一是对偶问题的求解往往比原问题容易,二是对于线性不可分的数据可以通过加松弛变量、加核函数的方法,将其推广到非线性分类。

二、原始SVM的对偶问题及其求解

原始的SVM模型的原问题如下:

minw,bs.t.12w21yi(wxi+b)0i=1,2,...,N
为方便计算,将范数形式改写成如下形式:
minw,bs.t.12wTw1yi(wxi+b)0i=1,2,...,N
要想求原始问题的对偶问题,首先构造拉格朗日函数入如下:
L(w,b,λ)=12wTw+i=1Nλi[1yi(wTxi+b)]λi0,i=1,2,...,N
上式中的 λi 是拉格朗日乘子。
观察上述式子,可发现
λi[1yi(wTxi+b)]0

所以 L(w,b,λ)12wTw ,即构造的拉格朗日函数是原问题的一个下界。
根据拉格朗日对偶性,原始问题的的对偶问题是极大化极小问题:
maxλminw,bL(w,b,λ)
上式所表达的意思是,先求 L(w,b,λ) w,b 的极小,再求对 λ 的极大。
首先,求 minw,bL(w,b,λ)
我们知道,对于一阶可导函数,其在导数值为0的地方,取到极大或极小值,对于我们构造的拉格朗日函数,其偏导导数为0的点,一定是极小值。故:
0=wL(w,b,λ)=w+i=1Nλi(yixi)w=i=1Nλiyixi0=bL(w,b,λ)=i=1Nλiyi
  • 9
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值