机器学习中的EM算法详解及R语言实例(2)

本文深入探讨了高斯混合模型(GMM)及其在机器学习中的应用,通过EM算法进行聚类分析。利用R语言的mclust包,文章展示了如何执行EM聚类,并推荐了相关资源进一步学习机器学习和数据分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们在上一篇文章中介绍了EM算法的基本原理,如果读者对此不甚了解,建议参阅

机器学习中的EM算法详解及R语言实例(1)


4. 高斯混合模型


高斯混合模型(GMM,Gaussian Mixture Model)可以看成是EM算法的一种现实应用。利用这个模型可以解决聚类分析、机器视觉等领域中的许多实际问题。


4.1 模型推导


在讨论EM算法时,我们并未指

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

白马负金羁

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值