EM算法(Expectation-Maximization Algorithm)是一种在机器学习中常用的迭代优化算法,特别适用于含有隐变量的模型。本文将详细介绍EM算法的原理,并给出一个使用R语言实现的示例。
一、EM算法原理
EM算法旨在通过迭代逐步优化模型参数,从而求解概率模型中的最大似然估计。它的基本思想在于,如果模型包含了观测变量和隐变量,并且无法直接通过已观测数据估计模型参数,那么可以通过迭代的方式利用观测数据的辅助信息来近似估计参数。
EM算法的核心是通过两个步骤交替进行迭代:E步(Expectation Step)和M步(Maximization Step)。
-
E步:在E步中,根据当前参数的估计值,计算隐变量的后验概率。这相当于计算给定观测数据和当前参数下,隐变量的期望。
-
M步:在M步中,根据上一步得到的隐变量的后验概率,重新估计模型的参数。这相当于通过极大化对数似然函数的期望来更新参数。
通过不断交替执行E步和M步,EM算法可以逐渐收敛到局部最优解。
二、EM算法的R语言实现示例
下面我们通过一个简单的例子来演示如何用R语言实现EM算法。
假设我们有一组观测数据X,服从两个正态分布N(μ1, σ1^2)和N(μ2, σ22),其