自适应学习率算法.基于阿米霍步长准则的线性回溯搜索算法

158 篇文章 2 订阅
51 篇文章 11 订阅

解决在梯度下降等算法中,学习率步长的问题。

二分精确搜索法把梯度转化为和学习率的函数,问题转化为找学习率的问题, 然后寻找梯度最低的时候的学习率是多少,在此过程中用了二分法查找学习率。是一种精确搜索方法


阿米霍步长准则是一个模糊搜索方法,梯度的变化满足一定的程度,不如此处梯度是9,设定系数0.3,下一点梯度为2.7




import numpy as np
def ArmijoBacktrack(fun,d,x,alpha,c=0.3):
    """

    :param fun: 目标函数,是个函数
    :param d: 当前点x处的导数,因为要寻找的是当前点处的最佳学习速率alpha,当前点的梯度是固定的,是个值,向量
    :param x: 当前点,向量
    :param alpha: 初始学习速率
    :param c: 参数c
    :return: 返回找到的学习速率
    """
    now=fun(x)
    nextv=fun(x-alpha*d)

    count=50
    while nextv < now and count>0:
        """
        寻找最大的alpha
        """
        alpha = alpha*2
        nextv=fun(x-alpha*d)
        count -=1

    iterstep=50
    slope=np.dot(d,d)
    while nextv > now - slope * c * alpha and iterstep>0:
        """
        折半搜索
        """
        alpha=alpha/2
        nextv=fun(x-alpha*d)
        iterstep-=1
    return alpha



def GradientDescent(fun,dfun,x,alpha,itersteps):
    for i in range(itersteps):
        d=dfun(x)
        x-= d * alpha
        print fun(x)

def ArmijoGradientDescent(fun,dfun,x,alpha,itersteps):
    for i in range(itersteps):
        d=dfun(x)
        alpha=ArmijoBacktrack(fun,d,x,alpha)
        x-=d*alpha
        print '{},{}'.format(alpha,fun(x))

def fun1(args):
    """
    x^2+y^4+z^6
    :param args:
    :return:
    """
    return args[0]**2+args[1]**4+args[2]**6

def dgfun1(args):
    """
    x^2+y^4+z^6
    :param args:
    :return:
    """
    return np.array([2*args[0],4*args[1]**3,6*args[2]**5])

if __name__=='__main__':
    args=np.array([3,2,2],dtype=float)


    # GradientDescent(fun1,dgfun1,args,0.01,1000)
    ArmijoGradientDescent(fun1,dgfun1,args,0.01,1000)

    # print fun1(args)
    # print 9+16+64
    # print dgfun1(args)
    #print ArmijoBacktrack(fun1,d,args,0.1)
    # ArmijoBacktrack(fun1,dgfun1,args,0.001)
    # GradientDescent(fun1,dgfun1,args,0.001,10000)

    # d=dgfun1(args)



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张博208

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值