TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生在其攻读博士学位期间提出的一种新的单目标长时间(long term tracking)跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变、部分遮挡等问题。同时,通过一种改进的在线学习机制不断更新跟踪模块的“显著特征点”和检测模块的目标模型及相关参数,从而使得跟踪效果更加稳定、鲁棒、可靠。
对于长时间跟踪而言,一个关键的问题是:当目标重新出现在相机视野中时,系统应该能重新检测到它,并开始重新跟踪。但是,长时间跟踪过程中,被跟踪目标将不可避免的发生形状变化、光照条件变化、尺度变化、遮挡等情况。传统的跟踪算法,前端需要跟检测模块相互配合,当检测到被跟踪目标之后,就开始进入跟踪模块,而此后,检测模块就不会介入到跟踪过程中。但这种方法有一个致命的缺陷:即,当被跟踪目标存在形状变化或遮挡时,跟踪就很容易失败;因此,对于长时间跟

TLD算法是一种创新的长期目标跟踪方法,结合跟踪、检测和学习,解决了目标形变、遮挡等问题。通过在线学习机制更新特征点和目标模型,提高跟踪的稳定性和鲁棒性。在跟踪模块失败时,检测模块进行全图搜索,学习模块则评估错误并更新模型,确保跟踪效果。
最低0.47元/天 解锁文章
3546

被折叠的 条评论
为什么被折叠?



