关闭

poj-1183 反正切函数的应用

564人阅读 评论(0) 收藏 举报

Description

反正切函数可展开成无穷级数,有如下公式

(其中0 <= x <= 1) 公式(1)

使用反正切函数计算PI是一种常用的方法。例如,最简单的计算PI的方法:

PI=4arctan(1)=4(1-1/3+1/5-1/7+1/9-1/11+...)     公式(2)

然而,这种方法的效率很低,但我们可以根据角度和的正切函数公式:

tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)*tan(b)]  公式(3)

通过简单的变换得到:

arctan(p)+arctan(q)=arctan[(p+q)/(1-pq)]    公式(4)

利用这个公式,令p=1/2,q=1/3,则(p+q)/(1-pq)=1,有

arctan(1/2)+arctan(1/3)=arctan[(1/2+1/3)/(1-1/2*1/3)]=arctan(1)

使用1/2和1/3的反正切来计算arctan(1),速度就快多了。
我们将公式(4)写成如下形式

arctan(1/a)=arctan(1/b)+arctan(1/c)

其中a,b和c均为正整数。

我们的问题是:对于每一个给定的a(1 <= a <= 60000),求b+c的值。我们保证对于任意的a都存在整数解。如果有多个解,要求你给出b+c最小的解。

Input

输入文件中只有一个正整数a,其中 1 <= a <= 60000。

Output

输出文件中只有一个整数,为 b+c 的值。

Sample Input

1

Sample Output

5
看着题目虽然很难懂,但只要弄懂了其中的关键,你就会发觉这道题其实很简单。这道题其实完全可以看做是一道数学题,基本没有涉及什么算法。由题目可以知道1/a=(1/b+
1/c)/(1-1/b*1/c),化简的a=(b*c-1)/(b*c),由题目可得b,c>a,令b=a+m,c=a+n,代入上式可得m*n=a*a+1;令m=(a*a+1)/n;则b+c的最小值即为m+n的最小值,即当
(a*a+1)取模n==0时有最小值。
#include<iostream>
using namespace std;
int main()
{
	long long a;
	int n;
	while(cin>>a)
	{
		for(n=a;;n--)
		{
			if((a*a+1)%n==0)
			{
				cout<<a*2+n+(a*a+1)/n<<endl;
				break;
			}
		}
	}
	return 0;
}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:21024次
    • 积分:379
    • 等级:
    • 排名:千里之外
    • 原创:13篇
    • 转载:22篇
    • 译文:0篇
    • 评论:0条
    文章存档