poj-1183 反正切函数的应用

原创 2012年03月28日 22:52:52

Description

反正切函数可展开成无穷级数,有如下公式

(其中0 <= x <= 1) 公式(1)

使用反正切函数计算PI是一种常用的方法。例如,最简单的计算PI的方法:

PI=4arctan(1)=4(1-1/3+1/5-1/7+1/9-1/11+...)     公式(2)

然而,这种方法的效率很低,但我们可以根据角度和的正切函数公式:

tan(a+b)=[tan(a)+tan(b)]/[1-tan(a)*tan(b)]  公式(3)

通过简单的变换得到:

arctan(p)+arctan(q)=arctan[(p+q)/(1-pq)]    公式(4)

利用这个公式,令p=1/2,q=1/3,则(p+q)/(1-pq)=1,有

arctan(1/2)+arctan(1/3)=arctan[(1/2+1/3)/(1-1/2*1/3)]=arctan(1)

使用1/2和1/3的反正切来计算arctan(1),速度就快多了。
我们将公式(4)写成如下形式

arctan(1/a)=arctan(1/b)+arctan(1/c)

其中a,b和c均为正整数。

我们的问题是:对于每一个给定的a(1 <= a <= 60000),求b+c的值。我们保证对于任意的a都存在整数解。如果有多个解,要求你给出b+c最小的解。

Input

输入文件中只有一个正整数a,其中 1 <= a <= 60000。

Output

输出文件中只有一个整数,为 b+c 的值。

Sample Input

1

Sample Output

5
看着题目虽然很难懂,但只要弄懂了其中的关键,你就会发觉这道题其实很简单。这道题其实完全可以看做是一道数学题,基本没有涉及什么算法。由题目可以知道1/a=(1/b+
1/c)/(1-1/b*1/c),化简的a=(b*c-1)/(b*c),由题目可得b,c>a,令b=a+m,c=a+n,代入上式可得m*n=a*a+1;令m=(a*a+1)/n;则b+c的最小值即为m+n的最小值,即当
(a*a+1)取模n==0时有最小值。
#include<iostream>
using namespace std;
int main()
{
	long long a;
	int n;
	while(cin>>a)
	{
		for(n=a;;n--)
		{
			if((a*a+1)%n==0)
			{
				cout<<a*2+n+(a*a+1)/n<<endl;
				break;
			}
		}
	}
	return 0;
}

利用反正切函数展开计算∏的近似值

当x = 1时,arctan(x)的值即为∏/4的近似值#include #include using namespace std; int main() { double x, i, a...
  • myonelotus
  • myonelotus
  • 2016年02月25日 13:41
  • 840

poj-1183 反正切函数的应用

题目链接:http://poj.org/problem?id=1183 反正切函数的应用 Time Limit: 1000MS   Memory Limit: 1000...
  • xiaoyu_93
  • xiaoyu_93
  • 2012年03月28日 13:37
  • 519

matlab中的反正切函数

Matlab 中求相位的函数有 phase atan2  angle  atan Phase和angle的区别: 1Phase 支持标量和一维向量输入  angle 可以输入任意矩阵, 2相邻相位角差...
  • u011608357
  • u011608357
  • 2014年01月19日 11:27
  • 7006

atan2--四象限的反正切函数

【功能简介】求四象限的反正切。 【语法格式】 P=atan2(Y,X)  返回与X、Y同型的四象限反正切数组P。X和Y只取实部,虚部将被忽略。P中的元素分布在[-pi,pi]之间,其象限...
  • qq_18343569
  • qq_18343569
  • 2015年12月28日 09:00
  • 1897

tan和atan--正切和反正切函数

【功能简介】求变量的正切和反正切。 【语法格式】 1.Y=tan(X) 求X中元素的正切值,元素可以为复数。tan函数是周期函数,以pi为一个周期。当元素值等于pi/2的奇数倍时,函...
  • qq_18343569
  • qq_18343569
  • 2015年12月25日 19:59
  • 2218

POJ 1183 / Noi 01 反正切函数的应用 (等式变形 & 能否有比O(a)更快的算法?)

反正切函数的应用 http://poj.org/problem?id=1183 Time Limit: 1000MS Memory Limit: 10000K 由题意得等式 (c-a...
  • synapse7
  • synapse7
  • 2014年01月13日 10:43
  • 917

c++ 中求反正切的函数atan和atan2的差别?

atan2 返回给定的 X 及 Y 坐标值的反正切值。反正切的角度值等于 X 轴与通过原点和给定坐标点 (Y坐标, X坐标) 的直线之间的夹角。结果以弧度表示并介于 -pi 到 pi 之间(不包括 -...
  • Lina_ACM
  • Lina_ACM
  • 2016年06月04日 16:20
  • 1766

正切 斜率 反正切

正切函数是直角三角形中,对边与邻边的比值叫做正切。 java Math函数 public static double tan(double a);  传入角度对应的弧度值,返回该角度的正切值 ...
  • jjwwmlp456
  • jjwwmlp456
  • 2016年06月20日 00:07
  • 875

atan2反正切快速近似算法

“` C float atan2( float y, float x ); C Computes the arc tangent of y/x using the signs of...
  • ubunfans
  • ubunfans
  • 2015年06月29日 12:50
  • 4380

POJ-1183反正切函数的应用 解题报告(数论) 反正切函数,一个同余问题

链接-B -反正切函数的应用 Time Limit:1000MS    Memory Limit:10000KB    64bit IO Format:%I64d & %I64u   D...
  • fuzimango
  • fuzimango
  • 2012年04月09日 19:23
  • 941
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:poj-1183 反正切函数的应用
举报原因:
原因补充:

(最多只允许输入30个字)