麦克劳林级数:
t
a
n
x
=
x
+
x
3
/
3
+
(
2
x
5
)
/
15
+
O
(
x
6
)
(
T
a
y
l
o
r
s
e
r
i
e
s
)
tanx=x + x^3/3 + (2 x^5)/15 + O(x^6) (Taylor \ series)
tanx=x+x3/3+(2x5)/15+O(x6)(Taylor series)
求
t
a
n
x
级
数
展
开
可
用
s
i
n
/
c
o
s
(
即
多
项
式
长
除
法
)
求tanx级数展开可用sin/cos(即多项式长除法)
求tanx级数展开可用sin/cos(即多项式长除法)
s
e
c
x
=
1
+
x
2
/
2
+
(
5
x
4
)
/
24
+
O
(
x
6
)
(
T
a
y
l
o
r
s
e
r
i
e
s
)
secx=1 + x^2/2 + (5 x^4)/24 + O(x^6) (Taylor series)
secx=1+x2/2+(5x4)/24+O(x6)(Taylorseries)
∑anx∧n=a0+a1x+a2x^2+ .+anx^n+.
∑bnx∧n=b0+b1x+b2x^2+ .+bnx^n+.
∑anx∧n×∑bnx∧n=[a0+a1x+a2x2+.+anxn+.][b0+b1x+b2x2+.+bnxn+.]
=a0b0+(a0b1+a1b0)x+ .+(a0bn+a1bn-1+.anb0)x^n+.
类似多项式乘以多项式,把x^k的系数放在一起
s
e
c
x
=
1
+
t
a
n
2
x
secx=1+tan^2x
secx=1+tan2x
????????????????????????????????????????????????????????????
原
因
是
要
求
乘
积
的
级
数
绝
对
收
敛
,
如
果
只
是
条
件
收
敛
的
话
改
变
求
和
顺
序
就
可
能
收
敛
到
任
意
结
果
。
原因是{\color{red}要求乘积的级数绝对收敛},如果只是条件收敛的话改变求和顺序就可能\href{https://blog.csdn.net/ResumeProject/article/details/108367799}{收敛到任意结果}。
原因是要求乘积的级数绝对收敛,如果只是条件收敛的话改变求和顺序就可能收敛到任意结果。
因为出现了Euler数和Bernoulli数
为偶函数,求导变号,待定系数法带入乘积为1,得到展开式
其他,必须要记的几个公式:
e
x
好
求
导
直
接
记
e^x好求导直接记
ex好求导直接记
其
次
好
记
的
就
是
s
i
n
x
其次好记的就是sinx
其次好记的就是sinx
s
i
n
x
=
x
−
x
3
/
6
+
x
5
/
120
+
O
(
x
6
)
sinx=x - x^3/6 + x^5/120 + O(x^6)
sinx=x−x3/6+x5/120+O(x6)
s
i
n
x
为
奇
函
数
,
在
零
点
s
i
n
x
的
导
数
都
是
1
,
−
1
并
且
交
错
出
现
sinx为奇函数,在零点sinx的导数都是1,-1并且交错出现
sinx为奇函数,在零点sinx的导数都是1,−1并且交错出现
c
o
s
x
=
1
−
x
2
/
2
+
x
4
/
24
+
O
(
x
6
)
cosx=1 - x^2/2 + x^4/24 + O(x^6)
cosx=1−x2/2+x4/24+O(x6)
c
o
s
x
为
偶
函
数
,
s
i
n
求
导
得
到
cosx为偶函数,sin求导得到
cosx为偶函数,sin求导得到
(
1
+
t
)
a
=
1
+
a
t
+
…
…
用
二
项
式
定
理
或
者
直
接
计
算
也
是
非
常
简
单
的
( 1 + t ) ^ { a}=1+at +……用二项式定理或者直接计算也是非常简单的
(1+t)a=1+at+……用二项式定理或者直接计算也是非常简单的
令t=x^2
a
r
c
t
a
n
x
由
其
导
数
1
1
+
x
2
的
级
数
积
分
得
到
arctanx由其导数\frac { 1 } { 1 + x ^ { 2 } }的级数积分得到
arctanx由其导数1+x21的级数积分得到
a
r
c
s
i
n
x
由
其
导
数
1
1
−
x
2
的
级
数
积
分
得
到
arcsinx由其导数\frac { 1 } { \sqrt {1-x^2}}的级数积分得到
arcsinx由其导数1−x21的级数积分得到
1 1 + x 和 1 1 − x 是 首 相 为 1 的 等 比 级 数 , 有 高 斯 的 错 位 相 减 得 到 的 公 式 \frac { 1 } { 1 + x }和 \frac { 1 } { 1 - x } 是首相为1的等比级数,有高斯的错位相减得到的公式 1+x1和1−x1是首相为1的等比级数,有高斯的错位相减得到的公式
还 有 l n ( 1 + x ) = x − x 2 / 2 + x 3 / 3 − x 4 / 4 + x 5 / 5 + O ( x 6 ) 根 据 l n ( 1 + x ) 的 图 像 知 道 , 函 数 非 机 非 偶 , 系 数 都 在 , 由 常 用 不 等 式 知 其 小 于 x , 系 数 不 可 能 全 是 同 号 , 实 际 上 是 交 错 的 , x 为 首 相 , 特 点 没 有 阶 乘 还有ln(1+x)=x - x^2/2 + x^3/3 - x^4/4 + x^5/5 + O(x^6)根据ln(1+x)的图像知道,函数非机非偶 \\,系数都在,由常用不等式知其小于x,系数不可能全是同号,实际上是交错的,x为首相,特点没有阶乘 还有ln(1+x)=x−x2/2+x3/3−x4/4+x5/5+O(x6)根据ln(1+x)的图像知道,函数非机非偶,系数都在,由常用不等式知其小于x,系数不可能全是同号,实际上是交错的,x为首相,特点没有阶乘常用不等式
逆函数的展开求法
f
(
x
)
=
x
+
a
x
α
+
…
…
f(x)= x+ax^α+……
f(x)=x+axα+……
f
−
1
(
x
)
=
k
x
+
b
x
β
+
…
…
f^{-1}(x)= kx+bx^β+……
f−1(x)=kx+bxβ+……
则:k=1,b=-a,α=β
证明方法:
将
多
项
式
1
带
入
多
项
式
2
,
f
−
1
(
f
)
=
x
将多项式1带入多项式2,f^{-1}(f)=x
将多项式1带入多项式2,f−1(f)=x
可
用
s
i
n
,
a
r
c
s
i
n
,
t
a
n
,
a
r
c
t
a
n
验
证
可用sin,arcsin,tan,arctan验证
可用sin,arcsin,tan,arctan验证
t
a
n
(
x
)
=
(
2
t
a
n
(
x
/
2
)
)
/
(
1
−
t
a
n
2
(
x
/
2
)
)
tan(x) = (2 tan(x/2))/(1 - tan^2(x/2))
tan(x)=(2tan(x/2))/(1−tan2(x/2))
参考:
https://wenku.baidu.com/view/408b946e974bcf84b9d528ea81c758f5f71f296d.html
https://www.bilibili.com/read/cv4393698
Euler数和Bernoulli数:参考谢惠民数学分析习题课讲义
https://zhidao.baidu.com/question/1898101362676418260.html