初等函数的麦克劳林级数展开+逆函数的展开求法

在这里插入图片描述

麦克劳林级数:
t a n x = x + x 3 / 3 + ( 2 x 5 ) / 15 + O ( x 6 ) ( T a y l o r   s e r i e s ) tanx=x + x^3/3 + (2 x^5)/15 + O(x^6) (Taylor \ series) tanx=x+x3/3+(2x5)/15+O(x6)(Taylor series)
求 t a n x 级 数 展 开 可 用 s i n / c o s ( 即 多 项 式 长 除 法 ) 求tanx级数展开可用sin/cos(即多项式长除法) tanxsin/cos
在这里插入图片描述
在这里插入图片描述

s e c x = 1 + x 2 / 2 + ( 5 x 4 ) / 24 + O ( x 6 ) ( T a y l o r s e r i e s ) secx=1 + x^2/2 + (5 x^4)/24 + O(x^6) (Taylor series) secx=1+x2/2+(5x4)/24+O(x6)(Taylorseries)
在这里插入图片描述
∑anx∧n=a0+a1x+a2x^2+ .+anx^n+.
∑bnx∧n=b0+b1x+b2x^2+ .+bnx^n+.
∑anx∧n×∑bnx∧n=[a0+a1x+a2x2+.+anxn+.][b0+b1x+b2x2+.+bnxn+.]
=a0b0+(a0b1+a1b0)x+ .+(a0bn+a1bn-1+.anb0)x^n+.
类似多项式乘以多项式,把x^k的系数放在一起

s e c x = 1 + t a n 2 x secx=1+tan^2x secx=1+tan2x
????????????????????????????????????????????????????????????
在这里插入图片描述
原 因 是 要 求 乘 积 的 级 数 绝 对 收 敛 , 如 果 只 是 条 件 收 敛 的 话 改 变 求 和 顺 序 就 可 能 收 敛 到 任 意 结 果 。 原因是{\color{red}要求乘积的级数绝对收敛},如果只是条件收敛的话改变求和顺序就可能\href{https://blog.csdn.net/ResumeProject/article/details/108367799}{收敛到任意结果}。

因为出现了Euler数和Bernoulli数在这里插入图片描述
为偶函数,求导变号,待定系数法带入乘积为1,得到展开式

其他,必须要记的几个公式:

e x 好 求 导 直 接 记 e^x好求导直接记 ex
其 次 好 记 的 就 是 s i n x 其次好记的就是sinx sinx
s i n x = x − x 3 / 6 + x 5 / 120 + O ( x 6 ) sinx=x - x^3/6 + x^5/120 + O(x^6) sinx=xx3/6+x5/120+O(x6)
s i n x 为 奇 函 数 , 在 零 点 s i n x 的 导 数 都 是 1 , − 1 并 且 交 错 出 现 sinx为奇函数,在零点sinx的导数都是1,-1并且交错出现 sinxsinx11
c o s x = 1 − x 2 / 2 + x 4 / 24 + O ( x 6 ) cosx=1 - x^2/2 + x^4/24 + O(x^6) cosx=1x2/2+x4/24+O(x6)
c o s x 为 偶 函 数 , s i n 求 导 得 到 cosx为偶函数,sin求导得到 cosxsin

( 1 + t ) a = 1 + a t + … … 用 二 项 式 定 理 或 者 直 接 计 算 也 是 非 常 简 单 的 ( 1 + t ) ^ { a}=1+at +……用二项式定理或者直接计算也是非常简单的 (1+t)a=1+at+
令t=x^2
a r c t a n x 由 其 导 数 1 1 + x 2 的 级 数 积 分 得 到 arctanx由其导数\frac { 1 } { 1 + x ^ { 2 } }的级数积分得到 arctanx1+x21
a r c s i n x 由 其 导 数 1 1 − x 2 的 级 数 积 分 得 到 arcsinx由其导数\frac { 1 } { \sqrt {1-x^2}}的级数积分得到 arcsinx1x2 1

1 1 + x 和 1 1 − x 是 首 相 为 1 的 等 比 级 数 , 有 高 斯 的 错 位 相 减 得 到 的 公 式 \frac { 1 } { 1 + x }和 \frac { 1 } { 1 - x } 是首相为1的等比级数,有高斯的错位相减得到的公式 1+x11x11

在这里插入图片描述

还 有 l n ( 1 + x ) = x − x 2 / 2 + x 3 / 3 − x 4 / 4 + x 5 / 5 + O ( x 6 ) 根 据 l n ( 1 + x ) 的 图 像 知 道 , 函 数 非 机 非 偶 , 系 数 都 在 , 由 常 用 不 等 式 知 其 小 于 x , 系 数 不 可 能 全 是 同 号 , 实 际 上 是 交 错 的 , x 为 首 相 , 特 点 没 有 阶 乘 还有ln(1+x)=x - x^2/2 + x^3/3 - x^4/4 + x^5/5 + O(x^6)根据ln(1+x)的图像知道,函数非机非偶 \\,系数都在,由常用不等式知其小于x,系数不可能全是同号,实际上是交错的,x为首相,特点没有阶乘 ln(1+x)=xx2/2+x3/3x4/4+x5/5+O(x6)ln(1+x)x,x常用不等式

逆函数的展开求法

f ( x ) = x + a x α + … … f(x)= x+ax^α+…… f(x)=x+axα+
f − 1 ( x ) = k x + b x β + … … f^{-1}(x)= kx+bx^β+…… f1(x)=kx+bxβ+

则:k=1,b=-a,α=β

证明方法:

将 多 项 式 1 带 入 多 项 式 2 , f − 1 ( f ) = x 将多项式1带入多项式2,f^{-1}(f)=x 12,f1(f)=x
可 用 s i n , a r c s i n , t a n , a r c t a n 验 证 可用sin,arcsin,tan,arctan验证 sin,arcsin,tan,arctan


t a n ( x ) = ( 2 t a n ( x / 2 ) ) / ( 1 − t a n 2 ( x / 2 ) ) tan(x) = (2 tan(x/2))/(1 - tan^2(x/2)) tan(x)=(2tan(x/2))/(1tan2(x/2))
参考:
https://wenku.baidu.com/view/408b946e974bcf84b9d528ea81c758f5f71f296d.html
https://www.bilibili.com/read/cv4393698
Euler数和Bernoulli数:参考谢惠民数学分析习题课讲义
https://zhidao.baidu.com/question/1898101362676418260.html


相关推广:
n维球的体积的公式可以得到,因为e^x展开收敛,所以n维球的体积在n趋于无穷时为0。
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值