# poj-2262 Goldbach's Conjecture

K - Goldbach's Conjecture
Crawling in process...Crawling failedTime Limit:1000MS    Memory Limit:65536KB    64bit IO Format:%I64d & %I64u

Description

In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture:
Every even number greater than 4 can be
written as the sum of two odd prime numbers.

For example:
8 = 3 + 5. Both 3 and 5 are odd prime numbers.
20 = 3 + 17 = 7 + 13.
42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.)
Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million.

Input

The input will contain one or more test cases.
Each test case consists of one even integer n with 6 <= n < 1000000.
Input will be terminated by a value of 0 for n.

Output

For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

Sample Input

8
20
42
0


Sample Output

8 = 3 + 5
20 = 3 + 17
42 = 5 + 37

这道题目要求我们将一个数分解成两个素数。我们要做的是开一个数组来存储素数。然后从第一个素数开始塞选，看一下差是否为素数，是就输出，不是就继续循环。
#include<math.h>
#include<stdio.h>
int h[1000001]={0};
int main()
{
int  n,i,b,c,d,k=0;
h[1]=1;
b=(int)sqrt(1000000);
for(i=2;i<=b;i++)
{
if(h[i]==0)
{
d=1;
for(c=2;d<1000000;c++)
{
d=i*c;  //能相乘得到的都不是素数。
h[d]=1;
if(d==1000000)
break;
}
}
}
while(scanf("%d",&n)!=EOF)
{
k=0;
if(n==0)
break;
else
{
for(i=2;i<n;i++)
{
if(h[i]==0&&h[n-i]==0)
{
k=1;
printf("%d = %d + %d\n",n,i,n-i);
break;
}
}
if(k==0)
printf("Goldbach's conjecture is wrong.\n");
}
}
return 0;
}

• 本文已收录于以下专栏：

举报原因： 您举报文章：poj-2262 Goldbach's Conjecture 色情 政治 抄袭 广告 招聘 骂人 其他 (最多只允许输入30个字)