###### poj-2262 Goldbach's Conjecture
K - Goldbach's Conjecture
Crawling in process...Crawling failedTime Limit:1000MS    Memory Limit:65536KB    64bit IO Format:%I64d & %I64u

Description

In 1742, Christian Goldbach, a German amateur mathematician, sent a letter to Leonhard Euler in which he made the following conjecture:
Every even number greater than 4 can be
written as the sum of two odd prime numbers.

For example:
8 = 3 + 5. Both 3 and 5 are odd prime numbers.
20 = 3 + 17 = 7 + 13.
42 = 5 + 37 = 11 + 31 = 13 + 29 = 19 + 23.

Today it is still unproven whether the conjecture is right. (Oh wait, I have the proof of course, but it is too long to write it on the margin of this page.)
Anyway, your task is now to verify Goldbach's conjecture for all even numbers less than a million.

Input

The input will contain one or more test cases.
Each test case consists of one even integer n with 6 <= n < 1000000.
Input will be terminated by a value of 0 for n.

Output

For each test case, print one line of the form n = a + b, where a and b are odd primes. Numbers and operators should be separated by exactly one blank like in the sample output below. If there is more than one pair of odd primes adding up to n, choose the pair where the difference b - a is maximized. If there is no such pair, print a line saying "Goldbach's conjecture is wrong."

Sample Input

8
20
42
0


Sample Output

8 = 3 + 5
20 = 3 + 17
42 = 5 + 37

这道题目要求我们将一个数分解成两个素数。我们要做的是开一个数组来存储素数。然后从第一个素数开始塞选，看一下差是否为素数，是就输出，不是就继续循环。
#include<math.h>
#include<stdio.h>
int h[1000001]={0};
int main()
{
int  n,i,b,c,d,k=0;
h[1]=1;
b=(int)sqrt(1000000);
for(i=2;i<=b;i++)
{
if(h[i]==0)
{
d=1;
for(c=2;d<1000000;c++)
{
d=i*c;  //能相乘得到的都不是素数。
h[d]=1;
if(d==1000000)
break;
}
}
}
while(scanf("%d",&n)!=EOF)
{
k=0;
if(n==0)
break;
else
{
for(i=2;i<n;i++)
{
if(h[i]==0&&h[n-i]==0)
{
k=1;
printf("%d = %d + %d\n",n,i,n-i);
break;
}
}
if(k==0)
printf("Goldbach's conjecture is wrong.\n");
}
}
return 0;
}

#### hdu 1397 Goldbach's Conjecture

2014-12-05 13:13:38

#### 【九度】题目1440：Goldbach's Conjecture 2

2017-01-14 20:07:35

#### poj2262-Goldbach's Conjecture

2013-06-06 13:31:33

#### LightOJ 1259 - Goldbachs Conjecture （分解偶数为两个素数之和）

2016-03-08 17:43:06

#### Poj_2262 Goldbach's Conjecture(筛法求素数)

2016-12-12 21:41:13

#### POJ2909_Goldbach's Conjecture【素数判断】【水题】

2014-09-24 09:01:44

#### LightOJ - 1259 Goldbachs Conjecture

2015-07-09 20:36:21

#### LightOJ 1259 Goldbachs Conjecture(证明哥德巴赫猜想)

2016-05-29 11:45:23

#### LightOJ 1259 Goldbachs Conjecture（数论）

2016-02-25 20:32:36

#### POJ 2262 Goldbach's Conjecture(哥德巴赫猜想)

2015-08-13 22:29:33

## 不良信息举报

poj-2262 Goldbach's Conjecture