关闭

第一次跑高光谱数据结果

2537人阅读 评论(14) 收藏 举报
分类:

1、所用数据集 Bostwana、Indian Pines,所用算法 SVM

2、数据分析,高光谱数据维数高、信息量大、冗余信息多,这些先都不考虑,先输入SVM数据再考虑

3、试验流程 

①、加载数据,包括Data和label

②、数据预处理,归一化,我用的是最简单的 (x - min)/ max - min ,在每一维数据应用

③、选取训练样本,我用的是均衡选样,即每一类数据选取10%

④、训练SVM,我用的是c,g模式

⑤、分类,得到分类正确率,Kappa系数,分类结果图

4、实验结果

①、Bostwana

正确率:90.5172%

Kappa系数:0.8972

分类结果图:


Indian Pines

正确率:82.7788%

Kappa系数:0.8082

分类结果图:

5、分析

①、高光谱数据波段多,首先应该降维,可以用PCA等转换降维或者选择波段子集降维

②、高光谱数据是否需要降维,需要进一步研究

③、高光谱数据源数据值一般较大,但是变化性不大,如下所示,对于单维数据(单波段)肯定是归一化处理后更有利于分类,但是波段之间都有联系的,这种形式的归一化操作会破坏这种联系;如果对所有维(所有波段)数据进行归一化操作,在之前的经验中貌似效果并不好。。。如何找到一种更合理的归一化方式???


④、如何更有效地利用高光谱的物理特征

⑤、找到一个模型,可以兼顾物理特征和统计特征

5
0

猜你在找
【套餐】Hadoop生态系统零基础入门
【套餐】嵌入式Linux C编程基础
【套餐】2017软考系统集成项目——任铄
【套餐】Android 5.x顶级视频课程——李宁
【套餐】深度学习入门视频课程——唐宇迪
【直播】广义线性模型及其应用——李科
【直播】从0到1 区块链的概念到实践
【直播】计算机视觉原理及实战——屈教授
【直播】机器学习之凸优化——马博士
【直播】机器学习&数据挖掘7周实训--韦玮
查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:49822次
    • 积分:972
    • 等级:
    • 排名:千里之外
    • 原创:46篇
    • 转载:14篇
    • 译文:0篇
    • 评论:25条
    最新评论