立体匹配中的全局匹配(一)动态规划笔记

本文探讨立体匹配中的全局匹配,重点讲解动态规划算法。动态规划通过全局能量函数最小化,处理图像的顺序约束和连续性约束,减少误匹配。文中详细介绍了动态规划的思想、步骤和优化方法,包括基于行列双通道、树结构的改进,并提到了控制点的使用以降低复杂度和提高匹配准确性。

近来研究立体匹配,从入门开始,先学习一些基本的算法思想。
立体匹配算法中,全局匹配是一个很重要的部分,利用图像的全局约束信息,对局部图像的模糊不敏感,它的计算代价很高。全局匹配算法通过构建全局能量函数,然后通过优化方法最小化全局能量函数以求得致密视差图。

全局匹配算法一般有动态规划、置信传播、模拟退火、图割法、遗传学等,这里首先介绍动态规划,也是从一些论文中提取的思想,可能有不对的地方,望指正。

动态规划的思想就是把求解整个图像深度值的过程分解为一些子过程,逐个求解子过程,具体过程为根据外极线顺序约束,通过在视差图像上寻找最小代价路径得到最终视差图,从而减少了算法的复杂度,动态规划的思想体现了顺序约束和连续性约束。传统的动态规划算法可以很好的处理因局部纹理单一而造成的误匹配,算法复杂度不高,缺点是匹配过程忽略了每条极线间视差的约束,导致了视差图有条纹瑕疵现象。

参考论文:
双目视觉立体匹配方法研究-魏朋玉-重庆大学
基于动态规划的立体匹配算法研究-龚文-南昌航空大学
基于动态规划和置信传播 的立体匹配算法的研究 -刘英杰-燕山大学

1:首先了解下动态规划算法的思想:
解决爬楼梯的问题:
一个人每次只能走一层楼梯或者两层楼梯,问走到80层一共有多少种方法。
解:设DP[i]为走到第i层一共有多少种方法,那么DP[80]就是所求的目标。很显然DP[1]=1,DP[2]=2(走到第一层只有一种就是走一层楼梯,第二层有两种:走两次一层楼梯或者走一次两层楼梯)。同理走到第[i]层楼梯可以从第i-1层走一层,或者从i-2走两层。很容易得到:
递推公式:DP[i]=DP[i-1]+DP[i-2]
边界条件:DP[1]=1 DP[2]=2
则自顶向下的解法:

long long dp[81] = {
  
  0};/*用于保存中间结果 
否则会重复计算很多重复的子问题*/  
long long DP(int n)  
{  
    if(dp[n])  
        return dp[n];  
    if(n == 1)  
        return 1;  
    if(n == 2)  
        return 2;  
    dp[n] = DP(n-
### 半全局匹配(SGM)及其扩展到多目立体匹配全局匹配(SGM)是种高效的立体匹配算法,它结合了局部和全局算法的优点。具体来说,SGM采用了单像素互信息(HMI)作为匹配代价,并沿多个方向进行维能量最小化来近似替代二维全局能量最小化[^1]。 #### SGM的工作原理 为了提高效率并保持较高的准确性,SGM通过以下方式工作: - **匹配代价计算**:使用HMI或其他相似度测度计算每对对应像素之间的差异。 - **路径聚合**:沿着不同方向扫描图像,累积路径上的成本,形成最终的能量函数。这种做法使得SGM能够在减少计算复杂度的同时获得接近全局最优的结果。 对于多目的情况,即超过两台摄像机的情况,可以通过增加更多的视图来进行更精确的距离测量。多目立体视觉系统能够提供更加丰富的空间信息,有助于改善深度估计的质量。 在实际应用中,OpenCV提供了`cv::StereoSGBM`类用于执行半全局匹配操作。此模块不仅支持传统的左、右相机配置下的双目设置,还可以适应三目甚至更多摄像头组成的阵列。当应用于高分辨率图片时,比如1920×1080大小的帧,经过高度优化后的版本可以在高性能计算机上实现在300毫秒内的处理时间。 针对特定硬件平台的表现测试表明,在某些设备如联想拯救者Y7000笔记本电脑上,即使面对复杂的场景,SGBM也能达到相对合理的响应速度——大约为33毫秒完成次完整的配准过程[^5]。 ```cpp // C++ code example using OpenCV's StereoSGBM for multi-view stereo matching. #include <opencv2/opencv.hpp> int main() { cv::Ptr<cv::StereoSGBM> sgbm = cv::StereoSGBM::create(0, 16); // Load images from multiple cameras... std::vector<cv::Mat> views; // ...and process them with the same parameters or adjust individually for (size_t i = 0; i < views.size(); ++i){ // Perform disparity computation on each pair of adjacent views cv::Mat disp; sgbm->compute(views[i], views[(i+1)%views.size()], disp); // Further processing steps here... } } ```
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值