关闭

UVA 1336 Fixing the Great Wall

标签: 区间dp
233人阅读 评论(0) 收藏 举报
分类:

题目链接:http://acm.hust.edu.cn/vjudge/problem/36139


题意:一条直线上有n个点需要修理,每个点有一个修理费用ci和单位时间增加的费用di,如果在时刻t去修理,那么此点的费用为t*di+ci。给出起始坐标,求修复完全部点的最小话费。


思路:设f[i][j][k]为修复完区间[i,j]内的点且在当前区间的左端点(k=0)/右端点(k=1)时的最小花费,每一次前往一个点去修理需要花费时间t,那么所有还没被修理过的点就会产生∑di * t的额外花费,我们将某个点的花费按照时间拆开分段累加,这样就可以计算了。当前在某个区间[i,j]可以去i-1点修理或i+1点修理。

若向左走dp(i-1,j,0) = min( dp(i,j,0) + t(i->i+1) * ∑di  , dp(i,j,1) + t(j->i+1) * ∑di )。


#include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <cstdlib>
#include <iostream>
#include <algorithm>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <utility>
using namespace std;

#define rep(i,j,k) for (int i=j;i<=k;i++)
#define Rrep(i,j,k) for (int i=j;i>=k;i--)

#define Clean(x,y) memset(x,y,sizeof(x))
#define LL long long
#define ULL unsigned long long
#define inf 1000000001

const int maxn = 1009;

struct node
{
    int pos;
    int c;
    int add;
}p[maxn];

int n,v,stpos,st;

double dp[maxn][maxn][2];
LL sum[maxn];

bool cmp( node x , node y )
{
    return x.pos < y.pos;
}

void init()
{
    rep(i,1,n) scanf("%d%d%d",&p[i].pos,&p[i].c,&p[i].add);
    n++;
    p[n].pos = stpos;
    p[n].add = p[n].c = 0;
    sort( p + 1 , p + 1 + n , cmp );
    Clean(sum,0);
    rep(i,1,n)
        sum[i] = sum[i-1] + p[i].add;
}

double cal( int l , int r ) //计算除去[l,r]范围内的∑di
{
    return sum[l-1] + sum[n] - sum[r];
}

double cost( int x1 , int x2 ) //两点之间需要用的时间
{
    return (double)abs( p[x1].pos - p[x2].pos ) / (double)v;
}

void solve()
{
    rep(i,1,n)
    if ( p[i].pos == stpos )
    {
        st = i;
        break;
    }
    rep(i,1,n)
    if ( i == st ) dp[i][i][0] = dp[i][i][1] = 0; 
    else dp[i][i][0] = dp[i][i][1] = inf;
    rep(len,1,n-1)
        rep(l,1,n-len)
        {
            int r = l + len;
            double ex = cal( l+1 , r );
            dp[l][r][0] = min( dp[l+1][r][0] + ex * cost( l+1 , l ) , dp[l+1][r][1] + ex * cost( r , l ) );
            ex = cal( l , r - 1 );
            dp[l][r][1] = min( dp[l][r-1][0] + ex * cost( l , r ) , dp[l][r-1][1] + ex * cost( r - 1 , r ) );
        }
    double ans = min( dp[1][n][0] , dp[1][n][1] );
    rep(i,1,n) ans += p[i].c;
    printf("%d\n",(int)ans);
}

int main()
{
    while(cin>>n>>v>>stpos)
    {
        if ( n + v + stpos == 0 ) break;
        init();
        solve();
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:30969次
    • 积分:2746
    • 等级:
    • 排名:第13128名
    • 原创:254篇
    • 转载:1篇
    • 译文:0篇
    • 评论:36条
    最新评论