德邦快递携手火山引擎数智平台,破解数据难题实现营销增长

在快递行业中,数据的复杂性和多样性一直是企业面临的一大挑战。

在这里插入图片描述
在近日的采访中,德邦快递谈到通过引入火山引擎数智平台VeDI旗下系列数据产品,解决了长期困扰其营销活动的数据“黑盒”问题,显著提升了用户识别和营销效率,实现了月活用户和下单用户数的跃升。

德邦快递数字化营销总监周瑜表示,过去公司对于用户数据的处理停留在传统大数据的加工使用流程上,高度依赖人工处理,时效性滞后,总部对于整体用户数据缺乏实时性了解,导致营销策略部署不及时,一线人员收到营销线索、总部人员执行营销动作时客户状态已发生改变,无法实现高效识别精准营销的业务目标。只有推进全面的数字化营销体系建设,面向用户群体,以“业务”和“价值”驱动为主线,构建数字化营销体系才能破局。为了破解这一难题,德邦快递与火山引擎数智平台展开合作,通过后者提供的包括客户数据平台VeCDP、增长营销平台GMP在内的系列数据产品,构建以数据消费为中心的数据飞轮模式。

在周瑜看来,VeCDP能够通过强大的数据整合和标签体系能力,将各地区用户数据以可视化的图表方式呈现,这使得德邦快递能够清晰地了解到用户是谁,用户在哪,存在于什么状态。德邦快递通过VeCDP建立了数字化的客户洞察机制,提升了信息分析效率和客户经营能力,形成了数据渠道的客户画像应用,推进了客户管理数字化转型及客户信息标准化。

另外,GMP则通过目标人群圈选和发送时机选择等功能,帮助德邦快递实现营销信息的定时精准推送。德邦快递使用GMP系统打造了线上营销管理平台,运营人员基于用户画像,通过目标人群圈选和发送时机设置等功能,精准地将信息推送给目标用户。按照生命周期管理及用户场景分类,德邦快递在GMP上建立了超过15条自动化营销链路,通过用户触点及状态的改变,实现自动化触达,极大的提升了营销效率和营销时效性,减少场景客户漏损。

数据显示,与火山引擎数智平台合作之前,德邦快递每月只能进行3-5场营销活动,同时因为需要花费大量时间进行数据洞察和营销用户圈选,营销活动的时效性和精细度不是特别理想;但在引入GMP平台后,德邦快递目前最高峰时一个月能完成大约100场营销活动,营销活动效率提升5-6倍。

另一方面,得益于构建起更完整的用户图谱,通过对线上平台和线下网点的数据整合,覆盖了更全面的客户营销触点,实现了对现有用户的统一管理,德邦快递的月活用户数已经实现翻番,其中下单用户数同比增长13%。

“未来,德邦快递还将继续深化与火山引擎数智平台的合作,不断探索数智化营销新模式。”周瑜表示,“同时,我们还将持续参与行业交流和合作,共同推动快递行业的数智化转型和发展。”

快递在2018年7月2日的品牌战略发布会上宣布了从“物流”正式更名为“快递”,并聚焦于大件快递领域,推出了“大件快递3-60kg”的产品[^1]。虽然没有直接提及快递数据仓库项目的具体技术实现,但可以结合行业常见的做法和相关的数据中台建设经验,推测其可能的技术架构和实现方式。 ### 数据仓库项目的架构 数据仓库项目通常包括以下几个核心组件: 1. **数据源层**:从各种业务系统(如订单管理系统、运输管理系统等)中提取数据。这些系统可能包括关系型数据库、NoSQL数据库、日志文件等。 2. **数据采集与清洗层**:使用ETL工具(如Apache Nifi、Talend)或自定义脚本将数据从源系统提取出来,并进行清洗和转换,以确保数据的一致性和准确性。 3. **数据存储层**:存储清洗后的数据,通常会使用关系型数据库(如MySQL、PostgreSQL)、数据湖(如Amazon S3、Hadoop HDFS)或列式存储(如Apache Parquet、ORC)。 4. **数据处理与分析层**:使用大数据处理框架(如Apache Spark、Flink)进行数据处理和分析。这一层可能会构建数据集市,针对特定业务需求进行数据聚合。 5. **数据服务层**:提供数据查询和分析服务,通常会使用OLAP工具(如Apache Kylin、ClickHouse)或BI工具(如Tableau、Power BI)。 ### 技术实现 1. **数据采集与ETL**: - 使用Apache Nifi进行数据流的自动化采集和传输。 - 使用Talend或Informatica进行复杂的数据转换和清洗。 2. **数据存储**: - 使用Hadoop HDFS或Amazon S3作为数据湖,存储原始数据和清洗后的数据。 - 使用列式存储格式(如Parquet、ORC)提高查询效率。 3. **数据处理**: - 使用Apache Spark进行大规模数据处理和分析,利用其内存计算能力提高处理速度。 - 使用Flink进行实时数据流处理。 4. **数据查询与分析**: - 使用Apache Kylin或ClickHouse进行OLAP分析,提供快速的查询响应。 - 使用Tableau或Power BI进行数据可视化,支持管理层决策。 5. **元数据管理与监控**: - 使用Apache Atlas进行元数据管理,确保数据血缘和治理。 - 使用Prometheus和Grafana进行系统监控和告警。 ### 示例代码 以下是一个简单的ETL流程示例,使用Python和Pandas进行数据清洗和转换: ```python import pandas as pd # 读取原始数据 raw_data = pd.read_csv('raw_data.csv') # 数据清洗 cleaned_data = raw_data.dropna() # 删除缺失值 cleaned_data = cleaned_data[cleaned_data['weight'] > 0] # 过滤无效重量 # 数据转换 cleaned_data['weight_category'] = pd.cut(cleaned_data['weight'], bins=[0, 3, 10, 30, 60], labels=['0-3kg', '3-10kg', '10-30kg', '30-60kg']) # 保存清洗后的数据 cleaned_data.to_csv('cleaned_data.csv', index=False) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSDN资讯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值