关闭
当前搜索:

[置顶] 隐马尔可夫模型hidden Markov model

本文是《统计学习方法》李航著学习笔记。 为了叙述方便,将hidden Markov model简称HMM。HMM是一种用于标注问题的生存模型,模型工作过程:“隐藏的马尔科夫链”随机生成“不可观测的状态序列”,“每个状态”生成“一个观测”,从而得“观测序列”。在标注问题中,给定“最终的观测序列”,预测其对应的“状态序列”,也称为“标记序列”。可以把整个过程想象成一个网络层,各个状态点和观测点表示网...
阅读(72) 评论(0)

[置顶] EM算法expection maximization

本文是《统计学习方法》李航著学习笔记。...
阅读(85) 评论(0)

[置顶] 提升方法boosting

本文是《统计学习方法》李航著学习笔记。...
阅读(83) 评论(0)

[置顶] 支持向量机support vector machines

本文是《统计学习方法》李航著学习笔记。 为了叙述方便,将support vector machines简称SVM。SVM是一种二类分类模型,利用SVM对预测实例点进行分类就是根据决策函数的符号划归正负类,下面论述过程主要是有关SVM的模型学习过程。通常针对三种情况构建SVM学习模型: 1.)对线性可分数据集,构建硬间隔最大化的线性可分支持向量机 2.)对存在一些特异点的近似线性可分数据集,构建...
阅读(801) 评论(0)

[置顶] 逻辑斯谛回归与最大熵模型logistic regression/maximum entropy model

本文是《统计学习方法》李航著学习笔记。 为了叙述方便,将logistic regression mode简称LR,maximum entropy mode简称ME。LR和ME都是判别模型,即将预测实例点分配到“条件概率分布”最大的类中。下述讨论会着重于LR模型和ME模型的学习过程。 逻辑斯谛函数: l(x)=11+e−(x−μ)/γ,μ为位置参数,γ>0为形状参数l(x)=\frac{1}{1...
阅读(105) 评论(0)

[置顶] 决策树decision tree

本文是《统计学习方法》李航著学习笔记。 决策树是一种基本的分类与回归方法,这里主要讨论用于分类问题的决策树。...
阅读(145) 评论(0)

[置顶] 朴素贝叶斯法naive Bayes

本文是《统计学习方法》李航著学习笔记。...
阅读(110) 评论(0)

[置顶] k近邻法k-nearest neighbor

本文是《统计学习方法》李航著学习笔记。...
阅读(92) 评论(0)

[置顶] 感知机perceptron

本文是《统计学习方法》李航著学习笔记。 感知机是二类分类的线性分类模型,输入:实例的特征向量,输出:实例的类别。 感知机学习:求将训练数据进行线性划分的分离超平面,即将实例化分为正负两类的分离超平面。 数据集的线性可分性: 感知机模型: 损失函数: 目标函数(算法优化目标,学习目标): 这是一个无约束优化问题,优化方法采用随机梯度下降法。即给定任一参数...
阅读(211) 评论(0)

Tensorflow框架基本使用方法

本文是学习整理笔记。tensoflow基本运算模型tensorFlow通过Graph和Session来定义运行的模型和训练,这在复杂的模型和分布式训练上有非常大好处import tensorflow as tf #定义运算 a=tf.constant([1.0,2.0],name="a") b=tf.constant([2.0,3.0],name="b") result=a+b #result=...
阅读(8) 评论(0)

Tensorflow简介

Tensorflow是Google开源的深度学习框架,用于训练神经网络模型 Google的神经网络可视化工具http://playground.tensorflow.org/ 下文为了叙述方便,将Tensorflow简记为tf tf计算模型——计算图graph tf会将定义的“计算”自动转化成“计算图上的节点”,“节点之间的边”描述了“计算之间的依赖关系”,tf的计算图可以用来隔离...
阅读(16) 评论(0)

C语言自定义类型struct

C语言的类型: 内置类型——char,short,int,float,double; 自定义类型——struct结构体,union联合体,enum枚举类型。 C语言允许用户自己建立由不同类型数据组成的组合型的数据结构,它称为结构体。 声明结构体&初始化结构体变量 #include #include #include //对结构体变量初始化 struct Student {...
阅读(20) 评论(0)

C语言动态内存分配与释放

内存静态存储区(static):全局变量、静态变量(static int a;) 内存动态存储区(栈stack):局部变量 内存自由存储区(堆heap):临时用数据 其中静态存储区、动态存储区的变量空间开辟和释放自动进行,不需要程序人员操作内存; 只有堆区需要手动开辟和释放空间:静态开辟——在编译时刻,数组的空间大小就开辟完成; 动态开辟——malloc、calloc、realloc;手...
阅读(13) 评论(0)

C++数组指针v.s.指针数组 函数指针v.s.指针函数

数组指针:指向数组的指针;指针数组:存放指针的数组( ()的优先级高于[], []的优先级高于*) #include using namespace std; #include void main() { int ar[10]={1,2,3,4,5,6,7,8,9,10}; cout<<ar<<endl; //数组ar变量空间存的值(数组首元素的地址) cout<<&ar[0]<<en...
阅读(9) 评论(0)

C++指针与函数

程序定义了一个函数,在编译时,编译系统为函数代码分配一段存储空间,这段存储空间的起始地址(入口地址)称为这个函数的指针 函数指针要引用的函数需要满足3同:返回值类型,参数个数,一一对应的参数类型;只要满这些条件函数指针才能接收被调用函数的地址 #include using namespace std; #include int Max(int a,int b) { return a>b?...
阅读(13) 评论(0)

C++指针与字符串

C语言里没有字符串数据类型,要想获得字符串的表示形式利用字符数组 #include using namespace std; #include void main() { char ar[]={'a','b','c','d'}; cout<<ar; //字符串后无结束符\0,会有多余打印 cout<<endl; char br[]={'a','b','c','d','\0'};...
阅读(7) 评论(0)

C++运算符前置++v.s.后置++

前置++:先运算,后赋值 后置++:先赋值,后运算 #include using namespace std; #include void main() { int i=0; int v=i++; //先把i的值赋给v,后置++在整个语句分号结束之后起作用 //相当于以下两句: //int v=i; //i=i+1; (i+=1) cout<<"v:"<<v<<endl;...
阅读(16) 评论(0)

C++指针与数组

通过指针引用数组——数组元素的指针,就是数组元素的地址,一个变量有地址,一个数组包含若干元素,每个数组元素都在内存中占用存储单元,它们都有相应的地址,所以指针也可以指向数组元素(把某一元素的地址放到一个指针变量中) 用数组对指针赋值 #include using namespace std; #include void main() { int ar[10]={1,2,3,4,5,6,7...
阅读(16) 评论(0)

C++指针

变量类型大小v.s.指针变量类型大小 #include using namespace std; #include int main() { cout<<"类型大小:"<<endl; //各自类型都有各自的大小 cout<<sizeof(char)<<endl; cout<<sizeof(short)<<endl; cout<<sizeof(int)<<endl; cout<<si...
阅读(24) 评论(0)

Python机器学习库sklearn KFold交叉验证分组情况样本

sklearn官网KFold交叉验证 http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html#sklearn.model_selection.KFoldfrom sklearn.cross_validation import KFold fold = KFold(50,5,shuffle...
阅读(22) 评论(0)

C++数组

#include using namespace std; #include int main() { int ar[10]; for(int i=0;i<10;++i) { ar[i]=i+1; //一个数组里存储的元素类型要一样 cout<<ar[i]<<endl; } system("PAUSE"); return 0; } 数组名变量存的值(数组首...
阅读(24) 评论(0)

深度学习里常用激活函数,目标函数

激活函数线性变换的复合还是线性变换,但很多时候只做线性变换,并不能很好得解决分类问题,需要引入非线性激活函数 (0)阶跃激活函数 (1)sigmoid激活函数,tanh激活函数 (2)ReLU激活函数,Leaky-ReLU激活函数 目标函数目标函数也称为损失函数、代价函数,是深度学习里用于训练模型时的优化目标函数。(1)二次代价函数C=12n∑i=1n||yi−a(xi)||2C=\...
阅读(47) 评论(0)

Keras框架作线性回归和非线性回归

import keras import numpy as np import matplotlib.pyplot as plt #按顺序构成的模型 from keras.models import Sequential #Dense全连接层 from keras.layers import Dense #构建一个顺序模型 model=Sequential()#在模型中添加一个全连接层 #unit...
阅读(61) 评论(0)

Ubuntu命令合集(一)

lsls:默认形式显示当前目录下文件列表ls -a:显示当前目录下所有文件,包括隐藏文件ls -l:显示当前目录下文件属性——大小、权限、日期、符号连接ls -lh:与ls -l类似,文件大小以K、M、G显示touch filiename.fileformat:创建文件filiename.fileformatls -t:按修改时间对文件进行排序ls -lt:与ls -l类似,是ls -t的详细版,按...
阅读(36) 评论(0)
125条 共9页1 2 3 4 5 ... 下一页 尾页
    个人资料
    • 访问:10994次
    • 积分:1301
    • 等级:
    • 排名:千里之外
    • 原创:124篇
    • 转载:1篇
    • 译文:0篇
    • 评论:0条