TextCNN文本分类

textCNN网络结构

在这里插入图片描述
textCNN 只有一层卷积,一层max-pooling, 最后将输出外接softmax 来n分类。
(1)对句子分词后onehot编码,对应6*5矩阵;(2)4*5的卷积核作用后,产生3*1的feature-map;(3)map-pooling取feature-map最大值;(4)各种卷积核过滤、max-pooling后横向concat,全连接输出层。
在这里插入图片描述

tensorflow搭建网络及测试案例

#coding=utf-8
import tensorflow as tf
import numpy as np

class TextCNN(object):
    """
    A CNN for text classification.
    Uses an embedding layer, followed by a convolutional, max-pooling and softmax layer.
    """
    def __init__(
      self,w2v_model, sequence_length, num_classes, vocab_size,
      embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0):

        # Placeholders for input, output and dropout
        self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x")
        self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y")
        self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob")

        # Keeping track of l2 regularization loss (optional)
        l2_loss = tf.constant(0.0)

        # Embedding layer
        with tf.device('/cpu:0'), tf.name_scope("embedding"):
            if w2v_model is None:
                self.W = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0),
                                     name="word_embeddings")
            else:
                self.W = tf.get_variable("word_embeddings",
                    initializer=w2v_model.vectors.astype(np.float32))

            self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x)
            self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1)

        # Create a convolution + maxpool layer for each filter size
        pooled_outputs = []
        for i, filter_size in enumerate(filter_sizes):
            with tf.name_scope("conv-maxpool-%s" % filter_size):
                # Convolution Layer
                filter_shape = [filter_size, embedding_size, 1, num_filters]
                W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1),dtype=tf.float32, name="W")
                b = tf.Variable(tf.constant(0.1, shape=[num_filters]),dtype=tf.float32, name="b")
                conv = tf.nn.conv2d(
                    self.embedded_chars_expanded,
                    W,
                    strides=[1, 1, 1, 1],
                    padding="VALID",
                    name="conv")
                # Apply nonlinearity
                h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu")
                # Maxpooling over the outputs
                pooled = tf.nn.max_pool(
                    h,
                    ksize=[1, sequence_length - filter_size + 1, 1, 1],
                    strides=[1, 1, 1, 1],
                    padding='VALID',
                    name="pool")
                pooled_outputs.append(pooled)

        # Combine all the pooled features
        num_filters_total = num_filters * len(filter_sizes)
        self.h_pool = tf.concat(pooled_outputs, 3)
        self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total])

        # Add dropout
        with tf.name_scope("dropout"):
            self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob)

        # Final (unnormalized) scores and predictions
        with tf.name_scope("output"):
            W = tf.get_variable("W",shape=[num_filters_total, num_classes],
                                initializer=tf.contrib.layers.xavier_initializer())
            b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b")
            l2_loss += tf.nn.l2_loss(b)         
            self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores")
            self.predictions = tf.argmax(self.scores, 1, name="predictions")

        # CalculateMean cross-entropy loss
        with tf.name_scope("loss"):
            losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y)
            self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss

        # Accuracy
        with tf.name_scope("accuracy"):
            correct_predictions = tf.equal(self.predictions, tf.argmax(self.input_y, 1))
            self.accuracy = tf.reduce_mean(tf.cast(correct_predictions, "float"), name="accuracy")

实验数据

label=0 \t 分词query \n
label=1 \t 分词query \n

在这里插入图片描述

参考资料:
https://www.cnblogs.com/ModifyRong/p/11319301.html
https://www.cnblogs.com/ModifyRong/p/11442595.html
https://www.cnblogs.com/ModifyRong/p/11442661.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
TextCNN(Convolutional Neural Network)是一种用于文本分类的神经网络模型。它基于卷积神经网络,可以对输入的文本进行特征提取和分类。 TextCNN的输入是一个文本,通常由单词或字符组成的序列。首先,将文本中的每个单词(或字符)表示为一个向量。这可以使用预训练的词向量模型(如Word2Vec)得到,也可以通过随机初始化向量并通过反向传播进行训练得到。 接下来,将这些单词向量输入到一维卷积层中。卷积层是通过滑动窗口在输入序列上进行局部感知,提取特定的文本特征。每个窗口的大小可以根据具体任务和数据集的需求进行调整。卷积操作产生了一系列的特征图,其中每个特征图对应不同的特征。 在卷积层之后,可以使用最大池化(MaxPooling)操作进一步提取最重要的特征。最大池化操作获取特征图中的最大值,以减少特征向量的维度。这样做的好处是提供了一种不变性,即无论特征在文本中的位置如何变化,还是可以被捕捉到。 在进行池化操作之后,将得到的特征向量连接起来,进一步经过全连接层进行分类。全连接层将特征映射到最终的类别概率分布上,可以使用Softmax函数来将输出值转化为概率。 TextCNN模型的训练过程通常使用交叉熵损失函数,并通过反向传播算法进行参数优化。可以使用梯度下降等算法对模型进行训练。 总结来说,TextCNN是一种用于文本分类的深度学习模型。它通过卷积操作和池化操作提取文本的特征,并通过全连接层进行分类。这种模型具有参数少、计算速度快、能够捕捉到文本的局部信息等优势,被广泛应用于自然语言处理领域的文本分类任务中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值