paper read weekly(three)

一晃过去一周多了,白驹过隙里的8月,尾巴里的日子,既盼着早些过去,又心里暗许着每一秒的珍贵。

我热爱一切的需要等待和沉淀:琥珀里的时间,微暗的灯火,那忽明忽暗的未来,那在路上向彼此靠近的我们。


最近一直在整理对称网络,包括Unet、Unet升级版、hourglassNet,stacked-hourglassNet,尝试了如下方向:

  • 增减卷积层、pooling—unpooling/deconvolution层
  • 改变loss
  • 调超参
  • 数据集的预处理
  • 预训练和finetune
  • ……

半个月下来,目标任务的效果依然乏善可陈,有点陷入“鞍点”而举步维艰的感觉。不过,有新鲜且有启发的paper可读,还是一件值得开心的事。接下来就进入正题。


<FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks>
想写这篇paper更多的是因为它里边很多的想法都具有很好的普适性,很多实验策略都很有启发。主要体现在以下几点:

  • 数据集的训练策略:

    • 网络的初始化更好的策略是通过数据集的预训练来完成对其初始化;
    • 数据集的运用顺序也很重要。比如由易到难、由粗到细、由大到小;
    • 针对深度网络依然无法解决的“顽疾”,可以手动挑选或者人工制作小数据集,对网络进行精细微调。
    • -
  • “网络块”的堆叠:

    • 可复用网络块的堆叠可以实现对特征的提取的优化
    • 块间可以引入监督信息,即loss的前置,可以改进单个块的特征提取能力,同时避免更早的发现错误;
    • 块的输入也可以多变,从而融合不同层之间不同level的特征,相当于引入先验;
    • 本文中不仅有原始图片的输入,还会有本层的误差作为下层的输入;
  • 多网融合:

    • 第一种是网络并行训练,前几层权值共享,后几层单独训练,再做特征融合,或者完全分开训练;
    • 第二种是大小网络分开训练的特征融合;
    • 第三种就是两个网络完全独立训练,然后组合串行,分阶段完成各自任务;

    本文中还有一个可以借鉴的trick是,将原图和label(适用于也是图片的)先进行一个embeding操作,然后在特征层面上求loss。这个就相当于将原图和label先映射到同一空间,然后再计算各自特征之间的差异,感觉更合理。。。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值