支持向量机SMO算法求解过程分析

本文详细分析了支持向量机(SVM)的SMO算法,包括对偶函数的优化问题、核函数缓存、梯度求解、序列最小化法的约束条件以及优化规则。通过选取规则和权重计算,阐述了如何在[0,C]区间内调整α值,以实现SVM模型的优化。提供了代码地址供参考。" 130956343,6680800,RockyLinux9.2中部署k8s1.27+kubeadm+calico+BGP+OpenELB详细教程,"['kubernetes', '容器', '网络', '负载均衡']

1.SVM对偶函数最后的优化问题

            

            

2. 对核函数进行缓存

由于该矩阵是对称矩阵,因此在内存中的占用空间可以为m(m+1)/2

映射关系为:

#define OFFSET(x, y) 	((x) > (y) ? (((x)+1)*(x) >> 1) + (y) : (((y)+1)*(y) >> 1) + (x))
//...
	for (unsigned i = 0; i < count; ++i)
		for (unsigned j = 0; j <= i; ++j)
			cache[OFFSET(i, j)] = y[i] * y[j] * kernel(x[i], x[j], DIMISION);
//...

3. 求解梯度

既然α值是变量,因此对α值进行求导,后面根据梯度选取α值进行优化。

梯度:

for (unsigned i = 0; i < count; ++i)
{
	gradient[i] = -1;
	for (unsigned j = 0; j < count; ++j)
		gradient[i] += cache[OFFSET(i, j)] * alpha[j];
}


若使W最大,则当α减少时,G越大越好。反之,G越小越好。

4. 序列最小化法(SMO)的约束条件

每次选取2个α值进行优化,其它α值视为常数,根据约束条件得:


进行优化之后:

5. 制定选取规则

由于α的范围在区间[0,C],所以△α受α约束


若选取的异号,即λ=-1,则增减性相同

假设

,则,此时应选取

上述命题可化为(注:等价)


若选取的同号,即λ=1,则增减性相异

,则,此时应选取,

上述命题可化为(注:等价)


将上述结论进行整理,可得(为了简便此处只选取G前的符号与y的符号相异的情况)

unsigned x0 = 0, x1 = 1;
//根据梯度选取进行优化的alpha值
{
	double gmax = -DBL_MAX, gmin = DBL_MAX;
	for (unsigned i = 0; i < count; ++i)
	{
		if ((alpha[i] < C && y[i] == POS || alpha[i] > 0 && y[i] == NEG) && -y[i] * gradient[i] > gmax)
		{
			gmax = -y[i] * gradient[i];
			x0 = i;
		}
		else if ((alpha[i] < C && y[i] == NEG || alpha[i] > 0 && y[i] == POS) && -y[i] * gradient[i] < gmin)
		{
			gmin = -y[i] * gradient[i];
			x1 = i;
		}
	}
}

6. 开始进行求解


alpha要求在区间[0,C]内,对不符合条件的alpha值进行调整,调整规则如下。 

分2种情况,若λ=-1,即:

代入后得:

if (y[x0] != y[x1])
{
	double coef = cache[OFFSET(x0, x0)] + cache[OFFSET(x1, x1)] + 2 * cache[OFFSET(x0, x1)];
	if (coef <= 0) coef = DBL_MIN;
	double delta = (- gradient[x0] - gradient[x1]) / coef;
	double diff = alpha[x0] - alpha[x1];
	alpha[x0] += delta;
	alpha[x1] += delta;
	unsigned max = x0, min = x1;
	if (diff < 0)
	{
		max = x1;
		min = x0;
		diff = -diff;
	}
	if (alpha[max] > C)
	{
		alpha[max] = C;
		alpha[min] = C - diff;
	}
	if (alpha[min] < 0)
	{
		alpha[min] = 0;
		alpha[max] = diff;
	}
}

若λ=1,即:

else
{
	double coef = cache[OFFSET(x0, x0)] + cache[OFFSET(x1, x1)] - 2 * cache[OFFSET(x0, x1)];
	if (coef <= 0) coef = DBL_MIN;
	double delta = (-gradient[x0] + gradient[x1]) / coef;
	double sum = alpha[x0] + alpha[x1];
	alpha[x0] += delta;
	alpha[x1] -= delta;
	unsigned max = x0, min = x1;
	if (alpha[x0] < alpha[x1])
	{
		max = x1;
		min = x0;
	}
	if (alpha[max] > C)
	{
		alpha[max] = C;
		alpha[min] = sum - C;
	}
	if (alpha[min] < 0)
	{
		alpha[min] = 0;
		alpha[max] = sum;
	}
}


然后进行梯度调整,调整公式如下:

for (unsigned i = 0; i < count; ++i)
	gradient[i] += cache[OFFSET(i, x0)] * delta0 + cache[OFFSET(i, x1)] * delta1;

7.进行权重的计算

计算公式如下:


double maxneg = -DBL_MAX, minpos = DBL_MAX;
SVM *svm = &bundle->svm;
for (unsigned i = 0; i < count; ++i)
{
	double wx = kernel(svm->weight, data[i], DIMISION);
	if (y[i] == POS && minpos > wx)
		minpos = wx;
	else if (y[i] == NEG && maxneg < wx)
		maxneg = wx;
}
svm->bias = -(minpos + maxneg) / 2;

代码地址:http://git.oschina.net/fanwenjie/SVM-iris/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值